

MAY 1 9 2008 San Joaquin Valley Business Unit

GAQCB-CVR FRESNO, CALIF.

Chevron North America Exploration and Production 1546 China Grade Loop Road Bakersfield, CA 93308

May 15, 2008

NPDES PERMIT NO. CA0082295 WDR ORDER #R5-2007-0170 TOXICITY TESTING

Mr. Dale Harvey Senior Engineer California Regional Water Quality Control Board - Fresno 1685 E Street Fresno, Ca 93706-2020

Dear Mr. Harvey,

Enclosed you will find the Acute and Chronic Toxicity Report for Cawelo per NPDES Order No. R5-2007-0170, Permit No. CA0082295. As the report shows. there were significant chronic toxicity effects related to the test with Fathead minnows using the effluent discharge at EFF-001. There is also an indication that the test method needs to be reviewed, as it exhibited "PRM" or pathogenrelated mortality. As we discussed, normally Chevron/Cawelo would have resampled once we saw the results, however, we are no longer discharging to Poso Creek and so toxicity testing is not required. We will run the toxicity tests again when we once again discharge into Poso Creek (EFF-003).

If you have any questions regarding the report, please contact Mr. Jim Waldron at (661) 654-7122.

Sincerely,

Kern River Area Manager

MONITORING REPORT REVIEW

Engineer

Compliance.

Date Reviewed ____

811168

Enclosure

CC:

David Ansolabehere, Manager, Cawelo Water District

NPDES Compliance Acute and Chronic Toxicity Testing of the "EFF-001 Discharge" Effluent

Samples collected February 4, 2008

Prepared For:

Precision Analytical 321 19th Street
Bakersfield, CA 93301

Prepared By:

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534

April 2008

NPDES Compliance Acute and Chronic Toxicity Testing of the "EFF-001 Discharge" Effluent

Samples collected February 4, 2008

Table of Contents

		Page
1.	. INTRODUCTION	1
	. TOXICITY TEST PROCEDURES	
	2.1 Sample Receipt and Handling	1
	2.2 Acute Toxicity Testing with Fathead Minnows	2
	2.3 Algal Growth Toxicity Testing with Selenastrum capricornutum	
	2.3.1 Reference Toxicant Testing of the Selenastrum capricornutum	
	2.4 Survival and Reproduction Toxicity Testing with Ceriodaphnia dubia	
	2.4.1 Reference Toxicant Testing of the Ceriodaphnia dubia	
	2.5 Survival and Growth Toxicity Testing with Larval Fathead Minnows	
	2.5.1 Reference Toxicant Testing of the Larval Fathead Minnows	
4.	RESULTS	
	3.1 Acute Effects of the Effluent on Fathead Minnows	6
	3.2 Chronic Effects of the Effluent on Selenastrum capricornutum	
	3.2.1 Reference Toxicant Toxicity to Selenastrum capricornutum	7
	3.3 Chronic Effects of the Effluent on Ceriodaphnia dubia	
	3.3.1 Reference Toxicant Toxicity to Ceriodaphnia dubia	
	3.4 Chronic Effects of the Effluent on Fathead Minnows	
	3.4.1 Reference Toxicant Toxicity to Fathead Minnows	11
4.	SUMMARY AND CONCLUSIONS	
	4.1 QA/QC Summary	

Appendices

Appendix A Chain-of-Custody Records for the Collection and Delivery of the Effluent and Receiving Water Samples Test Data and Summary of Statistics for the Evaluation of the Acute Toxicity of Appendix B the Effluent to Fathead Minnows Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of Appendix C the Effluent to Selenastrum capricornutum Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Appendix D Selenastrum capricornutum Appendix E Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Effluent to Ceriodaphnia dubia Appendix F Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Ceriodaphnia dubia Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of Appendix G the Effluent to Fathead Minnows Appendix H Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the

Fathead Minnows

1. INTRODUCTION

Precision Analytical has contracted Pacific EcoRisk (PER) to perform NPDES compliance evaluations of the acute and chronic toxicity of an effluent. These evaluations consist of performing the following US EPA freshwater acute and chronic toxicity tests:

- 96-hour acute survival test with fathead minnows;
- 96-hour algal growth test with the green alga Selenastrum capricornutum;
- 3-brood (6-8-day) survival and reproduction test with the crustacean Ceriodaphnia dubia; and
- 7-day survival and growth test with larval fathead minnows (Pimephales promelas).

This suite of freshwater acute and chronic toxicity tests was conducted on an effluent and receiving water sample collected on February 4, 2008. In order to assess the sensitivity of the test organisms to chronic toxic stress, reference toxicant tests were also performed. This report describes the performance and results of these effluent and reference toxicant tests.

2. TOXICITY TEST PROCEDURES

The methods used in conducting these tests followed the guidelines established by the EPA manual "Methods for Estimating the Acute Effects of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fifth Edition" (EPA/821/R-02/012) and "Short-Term Methods for Estimating the Chronic Effects of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition" (EPA/600/4-91/002).

2.1 Sample Receipt and Handling

On February 4, Precision Analytical staff collected samples of effluent and receiving water into appropriately cleaned containers. These samples were transported, on ice and under chain-of-custody, to the PER laboratory in Fairfield. Upon receipt at the testing laboratory, aliquots of each sample were collected for analysis of initial water quality characteristics (Table 1), with the remainder of the samples being stored at 4°C except when being used to prepare test solutions. The chain-of-custody records for the collection and delivery of these samples are provided in Appendix A.

Ta	Table 1. Initial water quality characteristics of the effluent and receiving water samples.							ples.
Date Received	Sample ID	Temp (°C)	рН	D.O. (mg/L)	Alkalinity (mg/L)	Hardness (mg/L)	Conductivity (µS/cm)	Total Ammonia (mg/L N)
2/4/07	RSW-001	19.9	7.90	13.8	90	90	266	<1.0
2/4/07	EFF-001	19.7	7.61	15.4	232	90	857	<1.0

2.2 Acute Toxicity Testing with Fathead Minnows

The fathead minnows used in this test were obtained from a commercial supplier (Aquatic Biosystems, Fort Collins, CO). These fish were maintained at 20°C in aerated aquaria containing EPA synthetic moderately-hard water prior to their use in this test. During this pre-test period, the fish were fed brine shrimp nauplii *ad libitum*.

The Lab Control water for this test consisted of EPA synthetic "moderately-hard" water, prepared by addition of reagent-grade chemicals to reverse-osmosis, de-ionized water. The receiving water (RSW-001) and the effluent sample (EFF-001) were tested at the 100% effluent concentration only. Water quality characteristics (pH, dissolved oxygen [D.O.], and conductivity) were determined for each test treatment test solution prior to use in this test.

There were two replicates for each test treatment, each replicate consisting of 400 mL of test solution in a 600-mL glass beaker. The test was initiated by randomly allocating 10 fathead minnows into each replicate beaker. The beakers were placed in a temperature-controlled room at 20°C under a 16L:8D photoperiod.

Each day, each replicate container was examined, and the number of live fish in each was recorded. Routine water quality characteristics (pH, D.O., and conductivity) of the treatment waters were measured and recorded for one randomly selected replicate per treatment each day.

On Day 2 of the 4-day test, fresh test solutions were prepared and characterized as before, and the fish were fed brine shrimp nauplii. Approximately 2 hrs after feeding, the number of live fish in each replicate was determined and then approximately 80% of the test media in each beaker was carefully poured out and replaced with fresh test solution, after which the "old" water quality characteristics (pH, D.O., and conductivity) were measured on the old test solution that had been discarded from one randomly-selected beaker at each treatment.

After 96 (±2) hrs, the test was terminated and the number of live fish in each replicate beaker was determined. The resulting survival data were analyzed to evaluate any impairment due to the wastewater; all statistical analyses were performed using the CETIS® statistical software (Version 1.1.2revL, TidePool Scientific, McKinleyville, CA).

2.3 Algal Growth Toxicity Testing with Selenastrum capricornutum

The chronic algal toxicity test consists of a 96-hr bioassay in which the green alga *Selenastrum* capricornutum is exposed to effluent or receiving water and the effects on cellular reproduction determined. The specific procedures used in this test are described below.

The receiving water served as the Control treatment for this test. The effluent sample was tested at the 100% concentration only. As an additional QA measure, a Lab Water Control treatment,

consisting of reverse osmosis, de-ionized (RO/DI), was also tested. Aliquots of the receiving water, effluent sample, and Lab Control water were spiked with nutrients and then filtered (using sterile 0.45 μ m filters) before use in the algal test, as per EPA guidelines. Routine water quality characteristics (pH, D.O., and conductivity) were measured on these test solutions prior to their use in the test.

There were 4 replicates for each test treatment, each consisting of a 250-mL glass Erlenmeyer flask containing 100 mL of test solution. Each flask was inoculated to an initial cell density of 10,000 cells/mL of *Selenastrum* from an ongoing PER laboratory culture that is maintained in log growth phase. These flasks were loosely capped and randomly positioned within a temperature-controlled room at 25°C, under continuous cool-white fluorescent illumination. Each day, the flasks were gently shaken in the morning and in the afternoon and re-positioned within the room.

After 96 (±2) hours exposure, the algal cell density in each replicate flask was determined by spectrophotometric analysis. The resulting cell density data were analyzed to evaluate any impairment of algal growth caused by the effluent; all statistical analyses were performed using the CETIS® statistical software.

2.3.1 Reference Toxicant Testing of the Selenastrum capricornutum

In order to assess the sensitivity of the *Selenastrum* to toxic stress, a reference toxicant test was performed. The reference toxicant test was performed similarly to the effluent test except that test solutions consisting of Lab Control water spiked with NaCl at concentrations of 0.5, 1, 2, 4, and 8 gm/L were used instead of effluent dilutions. The resulting test response data were statistically analyzed to determine key dose-response point estimates (e.g., IC50); all statistical analyses were made using the CETIS® software. These response endpoints were then compared to the typical response range established by the mean ± 2 SD of the point estimates generated by the most recent previous reference toxicant tests performed by this lab.

2.4 Survival and Reproduction Toxicity Testing with Ceriodaphnia dubia

The short-term chronic *Ceriodaphnia* test consists of exposing individual females to effluent or receiving water for the length of time it takes for the Lab Control treatment females to produce 3 broods (typically 6-8 days), after which effects on survival and reproduction are evaluated. The specific procedures used in this test are described below.

The receiving water served as the Control treatment for this test. The effluent sample was tested at the 100% concentration only. As an additional QA measure, a Lab Water Control treatment, consisting of a mixture of commercial spring waters (80% Arrowhead:20% Evian) was also tested. Aliquots of the receiving water, the effluent sample, and the Lab Water Control water were used to prepare daily test solutions; for each treatment, 200 mL of test solution was amended with the alga *Selenastrum capricornutum* and Yeast-Cerophyll-Trout Food (YCT) to

provide food for the test organisms. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these food-amended test solutions prior to use in this test. Each day of the test, fresh test solutions and a "new" set of replicate cups were prepared and characterized, as before.

There were 10 replicates for each test treatment, each replicate consisting of 15 mL of test solution in a 30-mL plastic cup. This "3-brood" test was initiated by allocating one neonate (< 24 hours old) *Ceriodaphnia*, obtained from ongoing laboratory cultures, into each replicate. The replicate cups were placed into foam boards that floated in a temperature-controlled room at 25°C, under cool-white fluorescent lighting on a 16L:8D photoperiod.

Each test replicate cup was examined daily, with surviving "original" individual organisms being transferred to the corresponding new cup containing fresh test solution. The contents of each remaining "old" replicate cup were carefully examined, and the number of neonate offspring produced by each original organism was determined, after which "old" water quality characteristics (pH, D.O., and conductivity) were measured for the "old" media from one randomly-selected replicate at each treatment.

After it was determined that $\geq 60\%$ of the *Ceriodaphnia* in the Lab Control treatment had produced their third brood of offspring, the test was terminated. The resulting survival and reproduction (number of offspring) data were analyzed to evaluate any impairment(s) caused by the effluent; all statistical analyses were performed using the CETIS® statistical software.

2.4.1 Reference Toxicant Testing of the Ceriodaphnia dubia

In order to assess the sensitivity of the *Ceriodaphnia* test organisms to toxic stress, a reference toxicant test was performed. The reference toxicant test was performed similarly to the effluent test except that test solutions consisting of Lab Control water spiked with NaCl at test concentrations of 250, 500, 1000, 1500 and 2000 mg/L were used instead of effluent dilutions. The resulting test response data were statistically analyzed to determine key dose-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS® software. These response endpoints were then compared to the typical response range established by the mean ± 2 SD of the point estimates generated by the most recent previous reference toxicant tests performed by this lab.

2.5 Survival and Growth Toxicity Testing with Larval Fathead Minnows

The chronic fathead minnow test consists of exposing larval fish to effluent or receiving water for 7 days, after which effects on survival and growth are evaluated. The specific procedures used in this test are described below.

The receiving water served as the Control treatment for this test. The effluent sample was tested at the 100% concentration only. As an additional QA measure, a Lab Water Control treatment,

consisting of US EPA synthetic moderately-hard water, was also tested. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these test solutions prior to use in the test. Each day of the test, fresh test solutions were prepared and characterized as before.

There were 4 replicates at each test treatment, each replicate consisting of 400 mL of test media in a 600-mL glass beaker. This test was initiated by randomly allocating 10 larval fathead minnows (<48 hrs old) into each replicate. The replicate beakers were placed in a temperature-controlled room at 25°C, under cool-white fluorescent lighting on a 16L:8D photoperiod. The test fish were fed brine shrimp nauplii twice daily.

Each replicate was examined daily, with any dead animals, uneaten food, wastes, and other detritus being removed. The number of live fish in each replicate was determined and then approximately 80% of the test media in each beaker was carefully poured out and replaced with fresh test solution. "Old" water quality characteristics (pH, D.O., and conductivity) were measured on the old test water that had been discarded from one randomly-selected replicate at each treatment.

After 7 days exposure, the number of live fish in each replicate beaker was recorded. The fish from each replicate were then carefully euthanized in methanol, rinsed in de-ionized water, and transferred to a pre-dried and pre-tared weighing pan. These fish were then dried at 100°C for 24 hrs and re-weighed to determine the total weight of fish in each replicate; the total weight was then divided by the initial number of fish per replicate (n=10) to determine the "biomass value". The resulting survival and growth ("biomass value") data were analyzed to evaluate any impairment(s) caused by the effluent; all statistical analyses were performed using the CETIS® statistical software.

2.5.1 Reference Toxicant Testing of the Larval Fathead Minnows

In order to assess the sensitivity of the fish to toxic stress, a reference toxicant test was performed concurrently with the effluent test. The reference toxicant test was performed similarly to the effluent test except that test solutions consisting of Lab Control media spiked with copper (as $CuSO_4$) at test concentrations of 6.25, 12.5, 25, 50, and 100 μ g/L were used instead of effluent dilutions. The resulting test response data were analyzed to determine key dose-response point estimates (e.g., EC50); all statistical analyses were made using the CETIS® software. These response endpoints were then compared to the typical response range established by the mean ± 2 SD of the point estimates generated by the 20 most recent previous reference toxicant tests performed by this lab.

4. RESULTS

3.1 Acute Effects of the Effluent on Fathead Minnows

The results of this test are summarized in Table 2. There was 100% survival in the Receiving Water Control treatment; there was also 100% survival in the effluent treatment, which was not significantly less than the Receiving Water Control, indicating that there was no acute toxicity to fathead minnows present in the effluent sample.

There was 100% survival in the Lab Water Control treatment.

The test data and summary of statistics for this test are presented in Appendix B.

Table 2. Acute effects of the efflu	ent on fathead minnows.
Test Treatment	Mean % Survival
Lab Water Control	100
Receiving Water Control	100
100% Effluent	100

3.2 Chronic Effects of the Effluent on Selenastrum capricornutum

The results of this test are summarized below in Table 3. There was a mean final algal cell density of 4,499,000 cells/mL at the Receiving Water Control treatment; there were no significant reductions in algal cell density in the effluent. The NOEC was 100% effluent, resulting in 1.0 TUc (where TUc =100/NOEC).

There was a mean final algal cell density of 3,070,000 cells/mL in the Lab Control.

The test data and summary of statistical analyses for this test are presented in Appendix C.

Table 3. Effects of the effluent of	on Selenastrum capricornutum growth.
Effluent Treatment	Mean Cell Density (cells/mL x 10 ⁶)
· Lab Water Control	3.07
Receiving Water Control	4.99
100% Effluent	4.57

3.2.1 Reference Toxicant Toxicity to Selenastrum capricornutum

The results of this test are summarized below in Table 4. There was a mean of 2,620,000 cells/mL in the Lab Control treatment. The IC50 was 1.94 gm/L NaCl.

These reference toxicant test results are consistent with previous *Selenastrum* reference toxicant tests performed in this laboratory, indicating that these organisms were responding to toxic stress in a typical fashion.

The test data and summary of statistical analyses for this test are presented in Appendix D.

Table 4. Reference toxicant testing: effects of NaCl on Selenastrum capricornutum growth.						
NaCl Treatment (gm/L)	Mean Algal Density (cells/mL x 10 ⁶)					
Lab Control	2.62					
0.5	2.65					
1	2.17*					
2 1.26*						
4 0.349*						
8 0.034*						
Summa	ry of Statistics					
IC50 = 1.	94 gm/L NaCl					

^{*} Significantly less than the Lab Control treatment response at p < 0.05.

3.3 Chronic Effects of the Effluent on Ceriodaphnia dubia

The results for this test are summarized below in Table 5. There was 100% survival and a mean of 19.5 offspring per female at the Receiving Water Control treatment; there were no significant reductions in survival or reproduction in the effluent. The NOECs of 100% effluent resulted in 1.0 TUc (where TUc =100/NOEC) for both test endpoints.

Due to problems encountered with the Lab Water Control test solution on Day 6 of the test, test organism survival in the Lab Control treatment was unacceptably low; however, the Receiving Water Control met all the test acceptability criteria and the effluent test results are considered valid.

The test data and summary of statistical analyses for this test are presented in Appendix E.

Table 5. Effects of the effluent on Ce	riodaphnia dubia surviv	al and reproduction.
Effluent Treatment	% Survival	Reproduction (# neonates/female)
Lab Water Control	0	5.5
Receiving Water Control	100	19.5
100% Effluent	100	19.4

3.3.1 Reference Toxicant Toxicity to Ceriodaphnia dubia

Due to problems encountered with the Lab Water Control test solution on Day 6 of the test, test organism survival in the control treatment was unacceptable low. As a result, and in order to provide confirmatory weight-of-evidence as to the quality of the test organisms, the results of the reference toxicant tests that were performed immediately prior to and immediately following the current effluent test are presented below.

Results of the reference toxicant test initiated on February 12, 2008, are summarized below in Table 6a. There was 100% survival and a mean of 25.6 neonates per female at the Lab Control treatment. The survival EC50 was 1842 mg/L NaCl, and the reproduction IC25 was 981 mg/L NaCl.

The reference toxicant test results were consistent with the reference toxicant test database, indicating that these test organisms were responding to toxic stress in a typical fashion.

The test data and the summary of statistical analyses for this test are presented in Appendix F.

Table 6a. Reference toxicant testing (2/12/08): Effects of NaCl on Ceriodaphnia dubia						
Treatment (mg/L NaCl)	% Survival	Reproduction (# neonates/female)				
Lab Control	100	25.6				
250	100	25.5				
500	100	24.4				
1000*	100	19*				
1500*	100	8.9*				
2000*	30*	0				
Summary of Ko	ey Statistics					
Survival EC50 or Reproduction IC25 =	1842 mg/L NaCl	981 mg/L NaCl				

^{*} Significantly less than the Lab Control treatment response at p < 0.05.

Results of the reference toxicant test initiated on March 11, 2008, are summarized below in Table 6b. There was 80% survival and a mean of 20 neonates per female at the Lab Control treatment. The survival EC50 was 1732 mg/L NaCl, and the reproduction IC25 was 1121 mg/L NaCl.

The reference toxicant test results were consistent with the reference toxicant test database, indicating that these test organisms were responding to toxic stress in a typical fashion.

The test data and the summary of statistical analyses for this test are also presented in Appendix F.

Table 6b. Reference toxicant testing (2/12/08): Effects of NaCl on Ceriodaphnia dubia							
Treatment (mg/L NaCl)	% Survival	Reproduction (# neonates/female)					
Lab Control	80	20.0					
250	100	19.6					
500	100	20.8					
1000*	100	16.7*					
1500*	100	10.1*					
2000*							
Summary of K	ey Statistics						
Survival EC50 or Reproduction IC25 =	1732 mg/L NaCl	1121 mg/L NaCl					

^{*} Significantly less than the Lab Control treatment response at p < 0.05.

3.4 Chronic Effects of the Effluent on Fathead Minnows

The results of this test are summarized below in Table 7. There was 94% survival at the Receiving Water Control treatment; there was 62.5% survival in the 100% effluent treatment, which was significantly less than the Receiving Water Control. The NOEC was 100% effluent, resulting in 1.0 TUc (where TUc =100/NOEC).

The mean fish biomass value was 0.47 mg at the Receiving Water Control treatment; there were no significant reductions in growth in the effluent.

There was 100% survival and a mean fish biomass value of 0.52 mg at the Lab Control treatment.

It should be noted that the fish in the effluent treatment replicates exhibited pathogen-related mortality (PRM), which is characterized by dead fish encased in a 'corona' of fungal filaments and inter-replicate variability. It is recommended that future testing be performed using an alternative approved EPA method that reduces the impact of PRM on fathead minnow toxicity tests.

The test data and the summary of statistical analyses for this test are presented in Appendix G.

Table 7. Effects of the effluent	on fathead minnow surviva	al and growth.
Effluent Treatment	Mean % Survival	Mean Fish Biomass Value (mg)
Lab Water Control	100	0.52
Receiving Water Control	92.5	0.47
100% Effluent	62.5*	0.08

^{*} Significantly less than the Receiving Water Control treatment response at p < 0.05.

3.4.1 Reference Toxicant Toxicity to Fathead Minnows

The results of this test are summarized below in Table 8. There was 100% survival and a mean biomass value of 0.54 mg at the Lab Control treatment. The survival EC50 value was 18.4 μ g/L Cu, and the growth IC50 was 17.2 μ g/L Cu.

These reference toxicant test results are consistent with previous fathead minnow reference toxicant tests performed in this laboratory, indicating that these organisms were responding to toxic stress in a typical fashion.

The test data and summary of statistical analyses for this test are presented in Appendix H.

Table 8. Reference toxicant testing: effects of copper on fathead minnows.								
Copper Treatment (µg/L)	Mean % Survival	Overall Mean Biomass Value						
Lab Control	100	0.54						
6.25	97.5	0.57						
12.5	97.5	0.50						
25	7.7*	0.02						
50	0*	0.00						
100 0* 0.00								
	Summary of Statistics							
Survival EC50 or Growth IC50 =	18.4 μg/L Cu	17.2 μg/L Cu						

^{*} Significantly less than the Lab Control treatment response at p < 0.05.

4. SUMMARY AND CONCLUSIONS

Acute Effects of "EFF-001 Discharge" Effluent on Fathead Minnows

There were no significant reductions in survival, indicating that the "EFF-001 Discharge" effluent was <u>not</u> acutely toxic to fathead minnows.

Chronic Effects of "EFF-001 Discharge" Effluent on Selenastrum capricornutum
There were no significant reductions in algal growth in the effluent sample; the NOEC was <100% effluent, resulting in >1.0 TUc.

Chronic Effects of "EFF-001 Discharge" Effluent on Ceriodaphnia dubia

There were no significant reductions in survival or reproduction in the effluent sample. The NOECs of 100% effluent resulted in 1.0 TUc (where TUc =100/NOEC) for both test endpoints.

Chronic Effects of "EFF-001 Discharge" Effluent on Fathead Minnows

There was a significant reduction in fathead minnow survival in the effluent; the NOEC was <100% effluent, resulting in >1.0 TUc. The significant reductions in fathead minnow survival were likely due to PRM. It is recommended that future testing be performed using an alternative approved EPA method that reduces the impact of PRM on fathead minnow toxicity tests.

4.1 QA/QC Summary

Test Conditions – Test conditions (pH, D.O., temperature, etc.) were all within acceptable limits for these effluent tests. All analyses were performed according the laboratory Standard Operating Procedures.

Negative Lab Control – Due to problems encountered with the Lab Water Control test solution on Day 6 of the test, test organism survival in the control treatment was unacceptably low; however, since the Receiving Water Control met test acceptability criteria and is the basis for evaluating the presence or absence of toxicity, the poor survival in the Lab Water Control does not affect the interpretation of the effluent test. The biological responses for the Selenastrum capricornutum and fathead minnows at the Lab Control treatments were within acceptable limits.

Positive Control – As a result, and in order to provide confirmatory weight-of-evidence as to the quality of the test organisms, the results of the reference toxicant tests that were performed immediately prior to and immediately following the current effluent test were presented.

The results for the reference toxicant tests were consistent with the reference toxicant test database, indicating that these test organisms were responding to toxic stress in a typical fashion.

Concentration Response Relationships – There were valid concentration-response relationships for the reference toxicant, which were therefore deemed acceptable for this testing.

Appendix A

Chain-of-Custody Records for the Collection and Delivery of the Effluent and Receiving Water Samples

Preci	Precision Analytical	-	Chain	of Cus	Chain of Custody Form			Page		_	
	Client Information				Client Instructions:	40:16					ıſ
Company:	" PACIFIC E				75.57.4	7 7 1 6 7	コースのメキンよ	WIT TOXICITY		Lab No:	·
Address:	·					1		20121143			7
City City	State:	Zip:			Report Delivery ("x" where applicable) Fax Email US Post $ X $	where applicable US Post	e) Project ID:	io k	:		Γ
Report To:	To: Tel: Fax:	Email:			Analysis Requested	equested		Temberature Readings		30	1 [
Report To:	To; Tel: Fax:	Email:	=		メ イ		Coole	Cooler (Inside) Bacteriological Container	2		
Log-	yect Billing Information (lab use only)	Matrix Codes: (column below)	12		VADA Value	WOAViel #!	33	 	\prod
Log-In Date:	3/4/08	AQ = Aqueous						Presented: V=Vc-	19	- :	7
Logged-In By:	STEVE HARRIS		5	Pil	ر لا		-1.		<u>,ç</u>	N = No G = Glass	
Precisio	fical Quote No:	G = G8S	•	M = Multi-phasic				1 1		-	(5
Client P.O. No.		F = Filter		known.	3.		<u>₹</u>	IM = Immediate 24	24 = 24 hour		D/d)
Sample No.	Sample Description	Matrix	Sa	Time	•		Priority	Same	N = 10 day	PSGIVEC	nenistn
	TFF- 001		3/17/2	/// 0	- _		eg ;	5	ca c3		oo l
, ,	1	1	2/1/2	2 :			۲	STEVE H.	HAPRIS	_	d'
1	001302	3	30/4/5	2421	× ×		マ	STEVE H	H+4415		0
										-	T
										+	-
							-				T
•==							-		-	1	_
		<u> </u>									
											Т
											· ·
1.5 ""	1.5 "aquished By: Kr. Jeff	- StaC	80/4/2	- []	∄·,	1 + 1 110			**************************************		
		Z Z	†	- Ime: 175	S Received By: //(w.lu./lu.	Medella	سملل	Date: 3-5-01	Time: 1(0	6	
		Date:		Time:	Received By:			Dafe:	Time:		
•		Date:	6	Time:	Received By:	·		Date:	Time:		
	al, 321 19th Street, Bakersfield, CA, 93301-4905, Tel: 661 323 1682, Fax 661 323 1684 or 661 323 1682, Email: sharris@bak.rr.com	ield, CA,	93301-4905,	, Tel: 661 3;	23 1682, Fax 661 323	1684 or 661 323	1682, Em	ail: sharris@bak.r	r.com		T

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Acute Toxicity of the Effluent to Fathead Minnows

CETIS Test Summary

Report Date: Test Link: 03 Apr-08 10:46 AM 07-8250-3673/27770

Acute Fish Su	ırvival Test							Pacific EcoRisk
Test No: Start Date: Ending Date: Setup Date:	15-4113-8302 05 Mar-08 05:00 09 Mar-08 03:15 05 Mar-08 05:00	PM	Test Type: Protocol: Dil Water: Brine:	Survival (96 EPA/600/4- Not Applica Not Applica	90/027F (199 ble	11)	Duration: Species: Source:	94h Pimephales promelas Aquatic Biosystems, CO
Sample No: Sample Date: Receive Date: Sample Age:	02-8216-0966 04 Mar-08 11:20 05 Mar-08 11:00 30h (19.7 °C)		Code: Material: Source: Station:	13054 Effluent Precision A EFF-001	nalytical		Client: Project:	Precision Analytical NPDES
Comparison S Analysis 10-1153-6079	Summary Endpoint 96h Proportion S	urvived	NOEL 100	LOE >100		:hV //A	PMSD N/A	Method Fisher Exact
96h Proportion	n Survived Summ	nary						
	Control Type R Lab Water 2 2		Mean 1.00000 1.00000	Minimum 1.00000 1.00000	Maximum 1.00000 1.00000	SE 0.00000 0.00000	SD 0.00000 0.00000	CV 0.00% 0.00%
96h Proportion	n Survived Detail							
*****	Lab Water 1	Rep 1 .00000 .00000	Rep 2 1.00000 1.00000					· · · · · · · · · · · · · · · · · · ·

Comparisons:

Report Date:

Page 1 of 1

CETIS Ana		Report Da Analysis:		03 Apr-08 10:46 AM 10-1153-6079/2777							
Acute Fish Survi	val Test									Pacific	EcoRisk
Endpoint 96h Proportion Su	rvived	Analysi Compar			Sample 07-8250-		ntrol Link 8250-3673	Date Analyz 03 Apr-08 10		Version CETISv1.1.	2
Method Fisher Exact		Alt H C > T		ransform sformed	Zeta	NOEL 100	LOEL >100	Toxic Units	ChV N/A	PN	ISD
Group Comparise Control vs Lab Water	Conc-%		atistic	P-Value 1.00000		on(0.05) ignificant Ef	fect				
	ntrol Type Water	Non-Respor	nders Ro	esponders	Total Obs	served					
0.5- 0.3- 0.3- 0.3- 0.3- 0.3- 0.3- 0.3- 0.3		•							,		

96 Hour Acute Fathead Minnow Toxicity Test

Client: _	Precis	ion Analyti	cal	Organism Log #: 3	789 Age: 94	
Test Material:	EF	F-00	1	Organism Supplier:	ABS	
Test ID#: _	27770	_ Project #	13054	Control:	EPANH	
Test Date:	2/5/08		_	Control Water Batch:	1083	
Feeding T.	Time: 1000	Initials:	CB_	Feeding T46-hr Tim	ne: Sy70 Initials CB	

Treatment	Temp	pI	I	D.O.	(mg/L)	Conductiv	ity (µS/cm)	# Live O	rganisms	SIGN-OFF
	(°C)	new	old	new	old	new	old	Rep A	Rep B	
Control	20.4	8.26		10.0		294		10	10	Date: 3/5/08 Sample ID: (9/5/7) Test Solution Prep: 6.0
100%	10.4	7.88	i de la companya de l	9.4		852		10	10	New WG: S Initiation Time: (700 Initiation Signoff:
Meter ID	6A	pHv3		D012		204				
Control	201		8.39		8,7		301	10	10	Date: 3-6-04 Count Time: 1/3-6 Count Signoff: 2
100%	20.1		8.26		9.2		862	10	10	Old WQ: ATA
Meter ID	6A		PH03		P014		Ecol		e de la companya de La companya de la co	
Control	90·9	8.23	8.54	01,5	7.4	294	330	10	10	Date: 517108 Sample ID: 19(5) Test Solution Prep:
100%	90'Ý	8.08	8.64	۹.٩	7.1	853	874	0	60	Renewal Time: 14:15 Renewal Signoff: 8
Meter ID	GA	Phiz	0H12	DOLO	000	ec oy	E09			Old WO: NB
Control	20.1	7 July 1	7.90	, and	8.3		304	10	10	Date: 3/8/06 Count Time: 10 5 Count Signoff:
100%	20.1		8.16		8,0		863	10	/0	Old WQ: HM
Meter ID	6A		PHH		DO10		Ecol			
Control	20.1		7.87		8.5		327	(0	(0	Date: 3 4 0 8 Termination Time: 15 5 Termination Signoff:
100%	20.1		8,25		8.5		901	(0	(0	oid wo: HM
Meter ID	60		PH II.		DOW		Eco1			

CETIS Test Summary

Report Date:

03 Apr-08 10:47 AM

Test Link: 02-8885-4315/27771 Acute Fish Survival Test Pacific EcoRisk Test No: 15-4113-8302 Test Type: Survival (96h) Duration: 94h Start Date: 05 Mar-08 05:00 PM Protocol: EPA/600/4-90/027F (1991) Species: Pimephales promelas Ending Date: 09 Mar-08 03:15 PM Dil Water: Not Applicable Source: Aquatic Biosystems, CO 05 Mar-08 05:00 PM Setup Date: Brine: Not Applicable Sample No: 00-8480-3111 Code: 13054 Client: Precision Analytical Sample Date: 04 Mar-08 11:45 AM Material: Effluent **NPDES** Project: Receive Date: 05 Mar-08 11:00 AM Source: Precision Analytical Sample Age: 29h (19.9 °C) Station: RSW-001 Comparison Summary **Analysis Endpoint** NOEL LOEL ChV **PMSD** Method 07-7479-0749 96h Proportion Survived 100 >100 N/A N/A Fisher Exact 96h Proportion Survived Summary Conc-% **Control Type** Reps Mean Minimum Maximum SD CV 0 Lab Water 2 1.00000 1.00000 1.00000 0.00000 0.00000 0.00% 100 2 1.00000 1.00000 1.00000 0.00000 0.00000 0.00% 96h Proportion Survived Detail Conc-% **Control Type** Rep 1 Rep 2 0 Lab Water 1.00000 1.00000

100

1.00000

1.00000

Comparisons:

Page 1 of 1

CETIS A	nalysis De	tail					Report Dat Analysis:	e:	· ·	-08 10:47 AI 9-0749/2777
Acute Fish S	urvival Test								Paci	fic EcoRisk
Endpoint 96h Proportio	n Survived	Analysis Typ Comparison	е	Sample L 02-8885-4		ntrol Link 8885-4315	Date Analyze		Version CETISv1.	1.2
Method Fisher Exact		·	ta Transform	Zeta	NOEL 100	LOEL >100	Toxic Units	Ch\ N/A		PMSD
Group Comp	parisons	,	and to to the total		100	- 100		19//		
Control Lab Water	vs Conc-% 100	1.00000			on(0.05) gnificant Ef	fect			· 	
Data Summa Conc-%	Control Type	Non-Responders		Total Obs	erved					
100	Lab Water	20 20	0	20 20						
944-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		•								
,		0 Conc-%	ı							

96 Hour Acute Fathead Minnow Toxicity Test

Client:	Precisi	on Analyti	cal	Organism Log #:	3789	<u>. </u>	Age: 9 d	
Test Material:	RS	<u>sw-0</u>	01	Organism Supplier:		ABS		
Test ID#:	27771	Project # _	13054	Control:		EPAR	elt	
Test Date:	3/5/08			Control Water Batch:		.[0	83	
Feeding T.	Time: 1000	Initials:	B	Feeding T46-hr	Time:	8:30	Initials CB	

Treatment	Temp	pF	I	D.O.	(mg/L)	Conductiv	ity (μS/cm)	# Live C	rganisms	SIGN-OFF
Troutmont	(°C)	new	old	new	old	new	old	Rep A	Rep B	
Control	20. Y	8,26	100	10.0		294		10	10	Date: 3/5/08 Sample ID: (9 (5 8) Test Solution Prep: 0-0
100%	20.4	8.02		9.5	19 10 (1)	275		10	10	New WOS Initiation Time: (700) Initiation Signoff: 800
Meter ID	64	0463		D012		ELOY				
Control	20.1		8.39		8.7	materials of the second	301	10	10	Date: 3-6-08 Count Time: 1/35 Count Signoff:
100%	20.1	, k	8,41		9,2	0.0	274.	10	0	Old WQ: HTA
Meter ID	6A		PH03		DOIY		ECOI			
Control	20.2	g.23	8.54	9.5	7.4	294	330	(0	(0	Date: Sample 19: 7 08 Test Solution Prep: 00
100%	20.2	8-14	8.52	9.8	7.2	206	280	10	10	New WQ: Renewal Time: 14:15 Renewal Signoff: B
Meter ID	GA 1	PHIZ	PHIZ	Delo	D010	E c 04	5004			
Control	20.1		7.90		€.3		304	10	10	Date: 3/8/08 Count Time: 10/5 Count Signoff:
100%	20.1		8.05		8.2		279	10	10	Old MÖ: HW
Meter ID	6A		PHII		DOU		Ecol			
Control	20.1		7.87		8.5		327 .	10	.10	Date: \$/4/08 Termination Time: \S/5 Termination Signoff
100%	20.1		8.20		8.4		305	(0	(D	olg MÓ: HV
Meter ID	6A		рни		D010		Ec05			

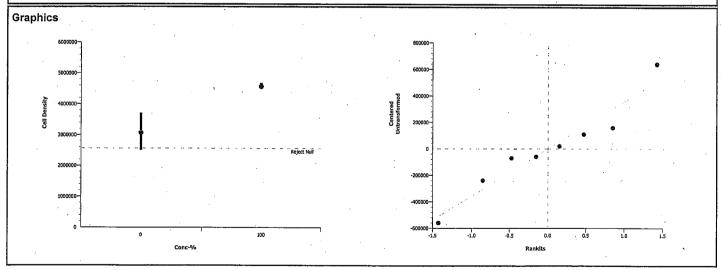
Appendix C

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Effluent to Selenastrum capricornutum

CETIS Test Summary

Report Date: Test Link: 03 Apr-08 10:55 AM 00-9902-9290/27817

Selenastrum	Growth Test							Pacific EcoRi
Test No: Start Date: Ending Date: Setup Date:	11-2795-3534 05 Mar-08 03: 09 Mar-08 02: 05 Mar-08 03:	05 PM 00 PM	Test Type: Protocol: Dil Water: Brine:	Cell Growt EPA/600/4 Receiving Not Applic	-91/002 (199 Water	14)	Duration: Species: Source:	95h Selenastrum capricornutum In-House Culture
•	02-8216-0966 04 Mar-08 11: 05 Mar-08 11: 28h (19.7 °C)	20 AM	Code: Material: Source: Station:	13054 Effluent Precision A EFF-001	Analytical		Client: Project:	Precision Analytical NPDES
Comparison	Summary	_ 111					·····	
Analysis	Endpoint		NOEL	LO	EL	ChV	PMSD	Method
15-6467-1194	Cell Density		. 100	> 100	> 100 N/A		16.62%	Equal Variance t Two-Sample
19-5276-9472			0	>0		N/A	20.66%	Equal Variance t Two-Sample
Cell Density S	Summary							
Conc-%	Control Type	Reps	Mean	Minimum	Maximum	SE	SD	cv
0	Lab Water	4	3.07E+6	2.51E+6	3.71E+6	2.59E+5	5.18E+5	16.89%
0	Receiving Wat	4	4.99E+6	4.66E+6	5.49E+6	1.98E+5	3.97E+5	7.95%
100		4	4.57E+6	4.50E+6	4.68E+6	4.18E+4	8.37E+4	1.83%
Cell Density D	Detail							
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			
0	Lab Water	3.71E+6	3.23E+6	2.83E+6	2.51E+6		<u> </u>	
0	Receiving Wat	5.12E+6	4.68E+6	5.49E+6	4.66E+6			•
100		4.68E+6	4.59E+6	4.51E+6	4.50E+6			


Report Date:

Page 1 of 2 03 Apr-08 10:55 AM

CETIS Analy	/sis Detail							Report Date: Analysis:	•	03 Apr-08 10:55 An 15-6467-1194/2781
Selenastrum Grov	th Test									Pacific EcoRisk
Endpoint Cell Density		Analy: Compa	sis Type arison		Sample Li 00-9902-9		trol Link 902-9290	Date Analyzed 03 Apr-08 10:55		Version CETISv1.1.2
Method Equal Variance t Tv	vo-Sample	Alt H C > T		ransform sformed	Zeta	NOEL 100	LOEL >100	Toxic Units	Ch\ N/A	
Group Compariso Control vs Lab Water	Conc-%		Statistic 5.7125	Critical 1.94318	P-Value 0.9994	MSD 51024	7	Decision(0.05) Non-Significant E	ffect	
ANOVA Table Source Between	Sum of Squa 4.5E+12		Mean Squa	1	F Statistic	c P-Valu		Decision(0.05) Significant Effect		
Total .	8.274E+11 5.3274E+12		.379E+11 4.638E+12	7				·		

Test	Statistic	Critical	P-Value	Decision(0.01)	
Variance Ratio F	38.40000	47.46723	0.01362	Equal Variances	
Shapiro-Wilk W	0.95440		0.75536	Normal Distribution	
<u>-</u>	Variance Ratio F	Variance Ratio F 38.40000	Variance Ratio F 38.40000 47.46723	Variance Ratio F 38.40000 47.46723 0.01362	Variance Ratio F 38.40000 47.46723 0.01362 Equal Variances

Data Summary			Original Data					Transformed Data				
Conc-%	Control Type	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximum	SD		
0	Lab Water	4	3.07E+6	2.51E+6	3.71E+6	5.18E+5						
100		4	4.57E+6	4.50E+6	4.68E+6	8.37E+4						

Comparisons:

Page 2 of 2

CETIS A	Analysis De	etail						Report Date: Analysis:		03 Apr-08 10:55 Al 9-5276-9472/2781
Selenastrun	n Growth Test					-				Pacific EcoRisk
Endpoint		Ana	lysis Type		Sample Li	nk Conti	rol Link	Date Analyzed	Ver	sion
Cell Density		Com	nparison		00-9902-92	290 00-99	02-9290	03 Apr-08 10:55	AM CE	TISv1.1.2
Method		Alt		ransform	Zeta	NOEL	LOEL	Toxic Units	ChV	PMSD
Equal Variar	ce t Two-Sample	C >	T Untrar	sformed		0	>0	N/A	N/A	20.66%
Group Com	parisons									
Control	vs Control		Statistic	Critical	P-Value	MSD		Decision(0.05)		
Lab Water	Receiving	g Water/Ef	fl -5.8751	1.94318	0,9995	634212		Non-Significant E	ffect	
ANOVA Tab	le ·							·····		
Source	Sum of	Squares	Mean Squa	re DF	F Statistic	P-Value	В	Decision(0.05)		
Between	7.354E+	·12	7.354E+12	1	34.52	0.00108	3	Significant Effect		
Error	1.278E+	-12	2.130E+11	6						
Total	8.6319E	+12	7.567E+12	7		-	i			
ANOVA Ass	umptions									
Attribute	Test			Statistic	Critical	P-Value	Э	Decision(0.01)		
Variances	Variance	e Ratio F		1.70893	47.46723	0.67064	4	Equal Variances	•	
Distribution	Shapiro-	-Wilk W		0.93203		0.53474	4	Normal Distributio	n	
Data Summa	ary			Origi	nal Data			Transf	ormed Da	ıta
Conc-%	Control Type	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maxim	um SD
0	Lab Water	4	3.07E+6	2.51E+6	3.71E+6	5.18E+5				•
0	Receiving Wat	4 .	4.99E+6	4.66E+6	5.49E+6	3.97E+5				
Graphics										
6.0E+0			4.1	•		8.0E+05-				
			, ,							
5.0E+0	16		ļ			6.0E+05				•
•			1		•			i	•	
£j. 4.0€+0	16				je d	4.0E+05-		* • • • • • • • • • • • • • • • • • • •		
Cell Density					Centr	2.0E+05-			•	
3.0E+0	6-			•		:		: ●		
	<u> </u>			Reject Null		0.0E+00		· · · - · · · · · · · · · · · · · · · · · · ·		
2.0E+0	6-					-2.0E+05-		. :		
							•	•		
1.0E+0	<u>-</u>					-4.0E+05-				

Selenastrum capricornutum Algal Toxicity Test Data Sheet

Sample ID: Effluent **Precision Analytical** Test Start Date: 3/5/08 27817 Project #: 13054 3/9/08 Control/Diluent: Algal medium w/o EDTA Location: 2551 Test End Date:

All Control Water is unfiltered

Test Treatment	Temp (°C)	рН	D.O. (mg/L)	Conductivity (µS/cm)	Sign-Off							
Lab Water Control	25.0	7.59	9.2	99	Date: 3/5/08							
Receiving Water	25.0	8.11	9.4	349	Sample ID #: 19157							
100%	25.0	7-19	7.2	914	Test Solution Prep:							
					New WQ: AB For CCS							
11.000					Inoculation Time: (505							
Meter ID	6	PH03	0012	Ecoy	Innoculation Signoff: MC							
Lab Water Control	25.6	7.86			Date: 3.6.08 WO Time:							
Receiving Water	25.6	9.34		-	WO Time: OQ 50 WO Signoff:							
100%	a5.6	8.39		100	WQ Signoff:							
Meter ID	98	PHII		150 p. 150 p								
Lab Water Control	25.3	9.43			Date: 3.7-08							
Receiving Water	25.3	8.94			Date: 3.7-08 WQ Time: 1325							
100%	25.3	8.90			WQ Signoff MB For CCS							
Meter ID	6	PH II										
Lab Water Control	25.1	10.05		1.00	Date: 3/8/08							
Receiving Water	25.1	9,71	1.2		WQ Time: 1340							
100%	25.1	9.41		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WQ Signoff: AS							
Meter ID	6	pHII										
Lab Water Control	52.3	20.20	16.2	<i>u</i> g	Date: 3-9-08 WQ Time: 95C							
Receiving Water	25.3	10.37	720.0	349								
100%	25,3	9.86	720.0	842	WQ Signoff: 455 µm							
Meter ID	C	PH12	DOIY	Geor .	WQ Signoff:							

1400 M Initial Count: 10,000 cells/mL Termination Time: Scientist: Cell Density (cells/mL x 10 °) Mean Cell Density Treatment Rep A Rep B Rep C Rep D (cells/mL x 10⁶) Lab Water 3.23 3.07 3.71 2.83 2.51 Control Receiving 5.12 4-68 5.49 4.66 4.99 Water 4.68 4.59 4.51 4.57 100% 4 50 Control Mean Density % CV Date: Time: Signoff: (cells/mL x 106) This datasheet has been reviewed 3.07 16.9 3/9/08 Lab Water Control 1415 MR for completeness and consistency with Test Acceptability Criteria 3/9/08 7.9 Receiving Water 1415 Mr and/or other issues of concern. 100%

Hardness

101

Alkalinity

231

Initial Test Conditions

Enumerating

Light Intensity (ftc)

412

Appendix D

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Selenastrum capricornutum

CETIS Test Summary

Report Date: Test Link:

Page 1 of 1 10 Mar-08 1:19 PM 14-2422-6748/27814

Selenastrum	Growth Test		:					Pacific EcoRisk
Test No: Start Date: Ending Date: Setup Date:	04-7884-2458 05 Mar-08 01 09 Mar-08 02 05 Mar-08 01	:30 PM :00 PM	Test Type: Protocol: Dil Water: Brine:		R-02-013 (20 y Water	02)	Duration: Species: Source:	4d 0h Selenastrum capricornutum In-House Culture
1 -	03-6829-9659 : 05 Mar-08 01; : 05 Mar-08 01; N/A (25 °C)	:30 PM	Code: Material: Source: Station:	13057 Sodium cl Reference In House			Client: Project:	
Comparison Analysis 14-2808-7569	Endpoint		NOEL 0.5	LC 1	DEL	ChV 0.70711	PMSD 11.20%	Method Steel Many-One Rank
Point Estimat	te Summary Endpoint	·	% Effe	ust Co	onc-g/L	95% LCL	95% UCL	Method
06-8484-2301			1 5 10 . 15	0.5 0.6 0.7	5280933 5404667 7809333	N/A 0.07697 0.4148443 0.6336427	0.5483798 0.7418988 0.9837978 1.164672	Linear Interpolation
			20 25 40 50	1.2	064266 21018 647922 039751	0.8177669 0.9674854 1.396043 1.66115	1.300168 1.44352 1.919051 2.383147	
Cell Density S	Summary							
Conc-g/L 0 0.5 1 2 4 8	Control Type Lab Water	Reps 4 4 4 4 4 4	Mean 2.62E+6 2.65E+6 2.17E+6 1.26E+6 3.49E+5 3.35E+4	Minimum 2.25E+6 2.40E+6 2.11E+6 1.06E+6 3.20E+5 3.07E+4	Maximum 2.84E+6 3.01E+6 2.21E+6 1.51E+6 3.70E+5 3.55E+4	1.33E+5 1.31E+5 2.22E+4 9.59E+4 1.10E+4 1.03E+3	SD 2.65E+5 2.62E+5 4.43E+4 1.92E+5 2.21E+4 2.06E+3	CV 10.12% 9.91% 2.05% 15.20% 6.33% 6.14%
Cell Density D	etail Control Type	Rep 1	Rep 2	Rep 3	Rep 4			·
0 0.5 1 2 4	Lab Water	2.78E+6 2.65E+6 2.15E+6 1.18E+6 3.43E+5 3.44E+4	2.25E+6 2.40E+6 2.21E+6 1.51E+6 3.61E+5	2.84E+6 2.53E+6 2.19E+6 1.06E+6 3.20E+5 3.55E+4	2.61E+6 3.01E+6 2.11E+6 1.30E+6 3.70E+5 3.33E+4			

Selenastrum capricornutum Cell Density Enumeration Data

Client:	Reference Toxicant	Initial Count:	10,000 alls/al
Test Material:	NaCl	Enumerating Scientist:	Mr
Test Start Date:	3/5/08 Start Time: 1330	Test ID #:	27814
Test End Date:	3/4/08 End Time: 1400	Project #: _	13057

Treatment	Rep A	Rep B	Rep C	Rep D	Mean
Lab Water Control (W/EDTA)	2.78	2.25	2.84	2.61	2-63
0.5	2-65	2.40	2-53	3.01	2.65
1	2-15	2.21	2-19	. 2-11	2.17
2	1-18	1.51	1.06	1.30	1-01-26
4	0.343	0.361	0.320	0.370	0.349
8	0.0344	0.0307	0.0355	0.0333	0.0335
This datasheet has been reviewed for completeness and consistency with Test	Control Mean Density (cells/mL x 10 ⁶)	% CV	Date:	Time:	Signoff:
Acceptability Criteria and/or other issues of concern.	2.63	(0.3	Jul 3/9/08	1415	MZ

Selenastrum capricornutum Algal Toxicity Test Water Quality Data

Test Material: NaCl Project #: 13057 Control/Diluent: Algal Medium-w/ EDT.	Client: _	Reference Toxicant	Test ID #:	27814	Test Date: 3/5/09
	Test Material:	NaCl	Project #:	13057	Control/Diluent: Algal Medium-w/ EDTA

Test Material:	NaCl	· · · · · · · · · · · · · · · · · · ·	Project #:13	3057 Contro	ol/Diluent: Algal Medium-w/ EDT/
Reference Toxicant Test Treatment (g/L NaCl)	Temp (°C)	рН	D.O. (mg/L)	Conductivity (µS/cm)	Sign-Off
Lab Water Control	25.0	8.18	9.2	95	Date: 3/5/08
0.5	25.0	8.08	9.2	1067	Test Solution Prep
1	25.0	8.05	9.2	2030	New WQ:
2	25,0	8.01	9.2	3890	Innoculation Time: 1330
4	25.0	7.94	9.3	7540	Innoculation Signoff
8	25,0	7.87	9.3	14440	
Meter ID:	6	DHOS	2010	EC03	
Lab Water Control	25.6	1.7	(#20)		Date:
0.5	25.6	7.67		4	WQ Time:
1	25.6	7.6%	e de la companya de l	Col. Sent Sept. Space	WQ Signoff:
2	25,6	1.4			
4	25.6	7.6			- 100 mg
8	2 7,5	7.54		32.1	
Meter ID:	9,4	THE			Carl Sales
Lab Water Control	249	9.25			Date: 3/7/08
0.5	249	9.28			WQ Time:
1	249	9.14			レンタの WQ Signoff CCち
2	249	8.92	100		
4	24.9	8.68			
8	24.9	8.52			
Meter ID:	<u> </u>	에시			240 PM
Lab Water Control	24.8	q q c			Date: 3/8/08
0.5	24.8	991			wQ lime: 535
1 .	24.8	9.65			WQ Signoff: AS
2	24.8	9.26			
4	L4.8	8.94		50c3 (1)	
8	24.8	8.63			
Meter ID:	11	offII			
Lab Water Control	24.8	(0.28	14.7	128	Date: 319/08
0.5	24.8	10.02	14.1	1048	Termination Time: 1400
1	24.8	9,93	13.5	1942	Fermination Signoff: M2_
2	248	907	10.4	7770 V	VQ Time: 940
4	24.8	9.10	6.9	7310 V	VQ Signoff:
8	24,8	8,29	9.2	13890	
Meter ID:	[[PHIA	D014	EC05	

. =====================================			<u> </u>
Initial Test Conditions	/ Alkalinity	Hardness	Light Intensity (ftc)
	V 9	16	415

Appendix E

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Effluent to Ceriodaphnia dubia

CETIS Test Summary

Reproduction Detail

Control Type

Receiving Wat

Lab Water

Rep 1

13

20

Rep 2

6

19

18

Rep 3

6

23

17

Rep 4

11

19

22

Rep 5

4

15

15

Rep 6

5

19

19

Rep 7

6

22

23

Rep 8

4

20

21

Rep 9

4

24

22

Rep 10

21

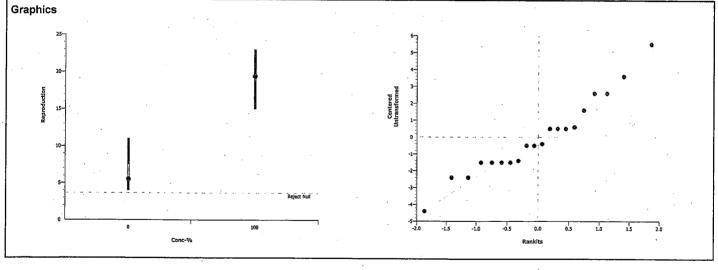
17

Conc-%

0

100

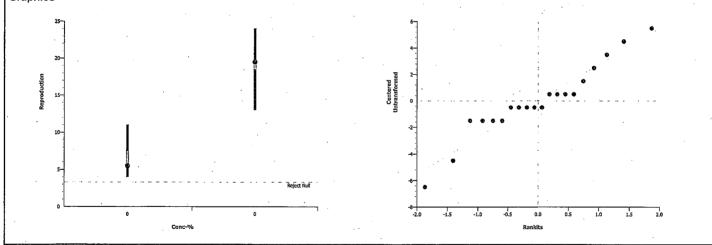
Report Date: Test Link: 03 Apr-08 1:31 PM 17-4826-1760/27821


Cladoceran Survival and Reproduction Test Pacific EcoRisk Test No: 13-3073-6950 Test Type: Reproduction-Survival (7d) Duration: 6d 18h Start Date: 05 Mar-08 06:40 PM Protocol: EPA/600/4-91/002 (1994) Species: Ceriodaphnia dubia Ending Date: 12 Mar-08 01:00 PM Dil Water: Not Applicable Source: In-House Culture 05 Mar-08 06:40 PM Brine: Setup Date: Not Applicable 02-8216-0966 Code: 13054 Client: Precision Analytical Sample No: Sample Date: 04 Mar-08 11:20 AM **NPDES** Material: Effluent Project: Receive Date: 05 Mar-08 11:00 AM Source: Precision Analytical 31h (19.7 °C) Station: EFF-001 Sample Age: **Comparison Summary** ChV PMSD Endpoint NOEL LOEL Method Analysis N/A 7d Proportion Survived N/A Fisher Exact 05-5331-4533 0 >0 100 > 100 N/A N/A 12-9326-0252 Fisher Exact 12-6349-7291 Reproduction 100 >100 N/A 33.71% Equal Variance t Two-Sample 0 >0 N/A 40.02% Equal Variance t Two-Sample 14-7054-0837 7d Proportion Survived Summary Ċ۷ Maximum SD Conc-% **Control Type** Reps Mean Minimum Lab Water 0.00000 0.00000 0.00000 0.00000 0.00000 0.00% 0 0 1.00000 0.00000 0.00% Receiving Wat 10 1.00000 1.00000 0.00000 1.00000 1.00000 0.00000 0.00% 100 10 1.00000 0.00000 Reproduction Summary Minimum CV Conc-% Control Type Reps Mean Maximum SD 0 Lab Water 10 5.5 11 0.67082 2.12132 38.57% 0 Receiving Wat 10 13 19.5 24 1.07755 3.40751 17.47% 100 10 15 23 0.83267 2.63312 13.57% 19.4 7d Proportion Survived Detail Conc-% **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 10 0.00000 0.00000 0.00000 0 Lab Water 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 O 1.00000 1.00000 1.00000 1.00000 Receiving Wat 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 100 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Analyst: M

Page 1 of 2

CETIS A	nal	ysis De	tail	·		•			Report Date: Analysis:		03 Apr-08 1:31 PN -6349-7291/2782
Cladoceran S	Survi	val and Rep	roductio	n Test							Pacific EcoRisk
Endpoint			Ana	ılysis Type		Sample Li	nk Contro	l Link	Date Analyzed	Vers	ion
Reproduction			Cor	nparison		17-4826-1	760 17-482	6-1760	03 Apr-08 1:30 F	M CET	Sv1.1.2
Method			Alt	H Data	Transform	Zeta	NOEL I	LOEL	Toxic Units	ChV	PMSD
Equal Varianc	e t Tv	wo-Sample	C >	T Untra	nsformed		100 >	>100	1	N/A	33.71%
Group Compa	ariso	ns						****			
Control	vs	Conc-%		Statistic	Critical	P-Value	MSD		Decision(0.05)		
Lab Water		100		-13	1.73406	1.0000	1.85418		Non-Significant Ef	fect	
ANOVA Table											
Source		Sum of S	quares	Mean Squ	are DF	F Statistic	c P-Value		Decision(0.05)		
Between		966.05	•	966.05	1	168.99	0.00000		Significant Effect		
Error		102.9		5.716667	18						
Total		1068.949	99	971.76665	19				= <		
ANOVA Assur	mptic	ons					········				
Attribute		Test			Statistic	Critical	P-Value		Decision(0.01)		
Variances		Variance	Ratio F		1.54074	6.54109	0.52980		Equal Variances		
Distribution		Shapiro-V	Vilk W		0.95914		0.52691		Normal Distribution	1	
Data Summar	у				Oriç	ginal Data			Transfo	ormed Data	
Conc-%	Con	trol Type	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximu	m SD


Data Sumn	nary			Origi	nal Data			Transfo	rmed Data	
Conc-%	Control Type	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximum	SD
0	Lab Water	10	5.5	-4	11	2.12132	*	100		
100		10	19.4	15	23	2.63312				

Page 2 of 2

03 Apr-08 1:31 PM

CETIS A	nalysis De	tail	~						Report Date: Analysis:			pr-08 1:31 Pt 54-0837/2782
Cladoceran	Survival and Rep	production	n Test								Pac	ific EcoRisk
Endpoint		Ana	lysis Type		Sample Li	nk	Contro	l Link	Date Analyzed		Version	······································
Reproduction		Con	parison		17-4826-1	760	17-4826	5-1760	03 Apr-08 1:30 F	PM	CETISv	.1.2
Method		Alt	H Data	Transform	Zeta	NC	EL L	.OEL	Toxic Units	ChV		PMSD
Equal Variand	ce t Two-Sample	C >	T Untra	nsformed		0	>	•0	N/A	N/A		40.02%
Group Comp	arisons											
Control	vs Control		Statistic	Critical	P-Value		MSD		Decision(0.05)			
Lab Water	Receiving	g Water/Ef	fi -11.03	1.73406	1.0000		2.20104		Non-Significant Ef	fect		-
ANOVA Table	e											
Source	Sum of	Squares	Mean Squ	are DF	F Statistic	С	P-Value		Decision(0.05)			
Between	980		980	. 1	121.66		0.00000		Significant Effect		·	·
Error	145		8.055555	18					٠.			
Total	1125		988.05556	19								
ANOVA Assu	ımptions	-										
Attribute	Test			Statistic	Critical		P-Value		Decision(0.01)			
Variances	Variance	Ratio F		2.58025	6.54109		0.17414		Equal Variances		·· · · · ·	
Distribution	Shapiro-	Wilk W		0.94017			0.24153		Normal Distribution	n		
Data Summa	ry			Origi	nal Data				Transf	ormed	l Data	
Conc-%	Control Type	Count	Mean	Minimum	Maximum	SI	D	Mean	Minimum	Ma	ximum	\$D
0	Lab Water	10	5.5	4	11 .	2.	12132					
0 .	Receiving Wat	10 ·	19.5	13	24	3.4	40751					
Graphics								-				
25-7							6 -]					_

Page 1 of 2

CETIS A	nalysis De	tail					Report Date Analysis:	:	-	r-08 1:31 PN 3-0252/2782
Cladoceran	Survival and Rep	production Test							Paci	ic EcoRisk
Endpoint 7d Proportion	ı Survived	Analysis Typ Comparison	е	Sample L 17-4826-1		ontrol Link 7-4826-1760	Date Analyzed		Version CETISv1.	1.2
Method Fisher Exact			ta Transform transformed	Zeta	NOEL 100	LOEL >100	Toxic Units	Ch\ N/A		PMSD
Group Comp Control Lab Water	vs Conc-%	Statisti 1.00000		Decisio Non-Sig	n(0.05) Inificant l	Effect		·		
Data Summa Conc-% 0 100	Control Type Lab Water	Non-Responders 0 10	Responders 10	Total Obse	erved					
Graphics 1.07 0.9- 0.8- 0.6- 0.5- 0.5- 0.4-										
0.3-									·	

Report Date:

Page 2 of 2

03 Apr-08 1:31 PM 05-5331-4533/27821

CETIS Analysis Detail

Analysis:

		40111					Allalysis.		00-0001-40001210
Cladoceran	Survival and Rep	roduction Test							Pacific EcoRis
Endpoint		Analysis Type		Sample L		Control Link	Date Analyzed		Version
d Proportion	Survived	Comparison		17-4826-1	760	17-4826-1760	03 Apr-08 11:0	3 AM	CETISv1.1.2
Method		Alt H Dat	a Transform	Zeta	NOE	L LOEL	Toxic Units	ChV	PMSD
isher Exact		C > T Unt	ransformed		0	>0	N/A	N/A	· · · · · · · · · · · · · · · · · · ·
roup Comp	arisons								
Control	vs Control	Statistic	P-Value	Decisio	n(0.05))			
ab Water	Receiving	Water/Effl 1.00000	1.00000	Non-Sig	gnifican	t Effect			
ata Summa	irv								
Conc-%	Control Type	Non-Responders	Responders	Total Obse	erved				
	Lab Water	0	10	10					
	Receiving Wat	10	0	10					1
raphics									-
1.0-									
0.9									
0.8	•								
7d Proportion Survived				•					
tion Si									
0.5 0.5				•					
0.4									
0.3	•			•			•		•
0.2-					٠.				
0.1-			•	•					,
0.0									
	•	0				•			

Short-Term Chronic 3-Brood Ceriodaphnia dubia Survival & Reproduction Test Data

30-58	Lab Water (80:20)		SIGN-OFF	Date: 35-08New WOMERORESt Init:: *8-18-	-	Sol'n Prep. A. Counts. No.	₹	Sol'n Prepiet Public WO: MO Counts & Long Sol'n Prepiet Public WO: WO: WO Counts Sol	Sol'n Prep: WO Old WOLL Counts: 1/2	3.11-0 (New WQ: Counts:	12-28New WO: C	New WQ: Old WQ:	onates/Female = 19												Mean Neonates/Female = 19-5	±.6)
Test Date:	Water		-	0	0	0	0	W	0	=	7		17		J	0	0	0	0	7	0	7	2		*	_
Tes	Control Water:		I	0	0	0	0	ュ	0	12	8		24		ı	0	0	0	0	0	0	e	75/2		22	
	Ö		H	0	0	0	0	<u>ت</u>	0	5	٩		20		H	0	0	0	0	7	0	ħ	7		21	
		ıction	G	0	0	0	0	3	0	10	6		22	ű	O	0	0	0	0	7	0	12	9		13	
nt		Reproduction	F	0	0	0	0	Ц	0	2	9		19	Survival / Reproduction	ш	0	0	0	0	7	0	4	13		61	
Effluent		Survival /]	田	0 ,	0	0	0	3	0	10	0		IS	1 / Repr	凹	0	0	0	0	ı	0	8	11		51	
		Sur	D	0	0	0	0	5	0	9	70		<u>[</u>	Surviva	D	0	0	0	0	1	0	۲	14		22	
			C.	0	0	0	0	5	0	11	7		23		C C	0	0	0	0	0	0	7	12		7	
Sample ID:			В	0	0	۵	0	て	0	4	و	6	义	٠,	В	0	0	0	0	0	0	5	13		18	
_ Sam	1		A	0	0	0	0	60	0	8	21		*		А	0	0	0	0	2	0	S	13		20	
•	20	Тетр	_	25.S	SS.	26.3	25.2	25.6	25.5	25.5	25.5	·	Total=						11.2						Total=	
cal	27820	Cond.	(μS/cm)	280	300	270	294	275	269	289	370			Cond.	(µS/cm)	851	872	\$ {}	&h&	8008	853	837	316			
Precision Analytical	Test ID:		Old		\ \ \ \ \	7.7	Lo.7	8.3	8.3	7.3	2.8			D.O.	Old		8.6	8.0	8.07	8.1	7.0	7.3	7,0			
ecision		D.O.	New	9.4	<u>~</u>	10.	9.0	9,9	9.0	10.5	j			D.	New	9.3	9.5	99	<u>2</u>	1.01	9.2	10.01	}		4	
P	13054		Old		8.47	8.44	8,30	8.33	11.8	8.0G	7.86			Hd	. PIO		8.45	8.55	8.37	8.45	8.74	8.10	8.39			
	-	Hď	New	7.45	8.12	8.13	8.06	8.13	8:30	7.96	. 1				New	1.79	8.18	8.15	8.1	8.33	8.17	<u>ا</u> &-	·}			
Client:	Project #:	Day		0	-	2		4	5	9	7	∞		Day		0.	-	2	3	4	5	9	7	∞ .		
-	Prc				·		ater	W ga	iviəo	<u>я</u>							-			%00	10					

Short-Term Chronic 3-Brood Ceriodaphnia dubia Survival & Reproduction Test Data

			· F	_										_
	3-5-08	Receiving Water		110	SIGN-OFF	Date: 3/5/08 Time: 1840 Sol'n Prep(3)	Date: 3/6/04 Time: 1515 Sol'n Prep: (21.)	Date: 3/7/04 Time: 10/5 Sol'n Prep: 480	Date 3/5/08 Time: 1675 Sol'n Prep: U	Date: 36 of Time: 1560 Sol'n Prep. No. 100 No.	Date 10 08 Time: (130 Sol'n Prep: 20	Date: 3/ 11 / 0 d	Date 1900 Solin Prep:	
	Test Date:					0	0	0	0	7	0	0/x	1	
	Tes				П	0	0	0	0	3	4/6	((
					H	0	0	0	0	4	° ×		1	
		Water	10:40	rcrion	Ð	0	0	0	0	4	_	x/3	1	-
	_	Control Water:	Donnod	Keproai	ц	0	0	0	0	7	0)×	1	
	EFF -001	Ö	/ lowing	oulvival/ Reproduction	田	0	0	0	D	7	0 *	(}	١
	田田		,	om	D	0	0	0	0	a	1	17	1	
(C	0	0	0	0	7	×	\	1	
	Sample ID:				В	0	0	0	0	0	/s	١.	1.	
	Sam	27820			Α	0	0	0	9	cu	2	1	l	L
			F	_	(၁) ၂	5'52	75.4	35.9	25.2	25.6	25.5	25.5	25.5	
	cal	Test ID #:	Cond	Colla.	(µS/cm)	224 125	307	812	230	:	215 255	325 25.5	1	
	Precision Analytical		0.0		PIO			8.3	6.6	7.1	7.6	%,€	l	
	ecision)	New	9.	9.2 8.9	8.6	4.8	5.	1.8	9.9		
	Pr	13054	Ha		Old		8.32	8.31 8.15 9.8	7.85	8.13 8.01 9.5 7.18	8.13 8.51	7.98 7.47 9.9	1	
			n	4	New	8.27	8.50 8.32	8.31	8.05 7.85 8.7	6.13	8.13	7.98	. (.	
	int:	Project #:		Dav	`	0	П	7	. 3	4	5	9	7	
	Client:	Pro					= .	,	Teter	W lor	tnoO	Lab		

Time: Old WQ:

Date: New WQ: X = 5.5

ナメ

1/4 1/4 1/4 1/4 H/A

11/2 1/10 1/10 1/11

Total = 1

Appendix F

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the *Ceriodaphnia dubia*

Report Date:

19 Feb-08 2:46 PM 08-1141-6140/27258

CETIS Test Summary

Test Link:

Cladoceran S	Survival and R	eproduct	ion Test						Pacific EcoRisk
Test No: Start Date: Ending Date: Setup Date:	09-7153-511 12 Feb-08 05 18 Feb-08 1 12 Feb-08 05	5:30 PM 1:00 AM	Test Type Protocol: Dil Water: Brine:	EPA/821/	•		Duration Species: Source:		
7 .	12-4621-939 12 Feb-08 05 12 Feb-08 05 N/A (25 °C)	5:30 PM	Code: Material: Source: Station:	12958 Sodium cl Reference in House			Client: Project:	Reference Toxicant	·
Comparison S	Summary								
Analysis 15-2937-0581 16-6054-3586	Endpoint 6d Proportion Reproduction		NOEL 1500 500	LC 20		ChV 1732.05 707.107	PMSD N/A 14.25%	Method Fisher Exact/Bonfer Dunnett's Multiple C	
Point Estimat	•								
Analysis 09-9028-2689	Endpoint 6d Proportion	Survived	% Effe		nc-mg/L 42.185	95% LCL 1691.934	95% UCL 2005.778	Method Trimmed Spearman	-Karber
18-6883-8050	Reproduction		1 5 10	507 625	5.4546 7.4074 5.9259	22.58333 112.9167 225.8333	525.4167 638.1411 780.0752	Linear Interpolation	
			15 20 25 40	862 981	1.4815	498.0769 661.9048 790.1786	952.8846 1037.143 1091.595		·
			50			1072.727 1217.391	1259.434 1392.473	•	
6d Proportion	Survived Sum	mary	•						· · · · · · · · · · · · · · · · · · ·
	Control Type	Reps	Mean	Minimum	Maximum	SE	SD .	CV	
250 500	Lab Water	10 10 10	1.00000 1.00000 1.00000	1.00000 1.00000 1.00000	1.00000 1.00000 1.00000	0.00000 0.00000 0.00000	0.00000 0.00000 0.00000	0.00% 0.00% 0.00%	
1000 1500 2000	•	10 10 10	1.00000	1.00000 1.00000 0.00000	1.00000 1.00000 1.00000	0.00000 0.00000 0.15275	0.00000 0.00000 0.48305	0.00% 0.00% 161.02%	
Reproduction S	Summary				:				
	Control Type ab Water	Reps 10		Minimum 17	Maximum 29	SE 1.17568	SD 3.71782	CV 14.52%	
50 00 000	·	10 10 10	25.5 24.4	17 16 12	30 28 25	1.20416 1.08730 1.22020	3.80789 3.43835	14.93% 14.09%	·
500		10	8.9	3	16 0	1.11006 0	3.51030	20.31% 39.44% 0.00%	

Report Date: Test Link: Page 2 of 2 19 Feb-08 2:46 PM 08-1141-6140/27258

6d Proportio	on Survived Deta	ail									
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0 .	Lab Water	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
250		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
500		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1000		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1500		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
2000	<u> </u>	0.00000	1.00000	0.00000	0.00000	-1.00000	0.00000	0.00000	1.00000	0.00000	0.00000
Reproductio	n Detail									·· ·	
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Lab Water	24	27	29	27	28	29	17	27	22	26
250		22	27	30	26	28	29	17	25	24	27
500		24	26	25	24	27	28	16	22	25	27
1000		21	23	19	22	25	18	12	18	16	16
1500	٠	10	6	7	3	9	12	8	8	10	16
2000		0	0	0	0	0 .	0	0 .	0	0	0

Environmental Consulting and Testing

Short-Term Chronic 3-Brood Ceriodaphnia dubia Survival & Reproduction Test Data

Time: 1750 Sol'n Prep: , wy Sol'n Prep: &P Time: 11 of Sol'n Prep: QD Old WQ: CS Counts: A.D New WOCAS Test Loading: March Prep. March Sol'n Prep: RV Date 21 1608 Time: 1650 Sol'n Prep. W. New WQ: Hz. Old WQ: AS Counts: Ko. Date 21 17 08 Time! 30 Sol'n Prep: B. New WQ: K2 Old WQ: K2 Counts: 1830 Date: 2/15/68 Time: 160 Soln Prep: 7 New WQ: 171 Old WQ: HY Counts: 7C Date: 21/16/67 Time: 160 Counts: (3.9) Sol'n Prep: Sol'n Prep: Counts: SIGN-OFF Date: 2/14/08 Time: 1/45 Time: Old WQ: かんなる Lab Water (80:20) Time: Old WQ: Ć.g Date: L-18-08 Date: 4108 New WOO New WO: Date: New WQ: Date: | |X Test Date: Z 0 Q و α 0 Q $\widetilde{\mathcal{K}}$ 0 0 0 0 0 12 07 7 0 0 0 S 0 Q 0 0 Ó 0 5 57 O 2 9 Ü べく 0 5 \mathbb{H} S 0 0 9 H Ö 0 0 ₩ 0 Control Water / Diluent: 0 Ŋ O 0 0 Survival / Reproduction 0 Ö 0 0 0 0 Survival / Reproduction 5 حر Sodium Chloride 12 3 3 20 E ſĽ 0 Q ゴ Ц O 0 0 Q 0 J 3 ζ 28 တ щ 0 Щ O 0 0 0 7 0 0 0 3 26 27 3 0 Д 0 Q Ω و 0 QŌ 0 り 0 5 3 6 30 ιΩ 0 20 C 0 0 C Ö 0 0 9 0 0 Material: 0 0 5 Ω 0 0 0 Щ 0 ଚ **@** ج: 3 2524 \tilde{z} 0 2 0 ď 0 α മ ⋖ 0 0 O ゴ O Temp 25.6 25.8 25.5 25.8 Fotal = Total = 1.52 (C) 25.1 25.1 (µS/cm) Test ID #: Cond. **hS2** John John 224 Cond. (µS/cm) 16 213 734 502 734 226 35 h77 714 <u>ก</u> 71.8 Reference Toxicant *2*. PIO 46 Old 10.8 8.3 ر ھن Ó. 5 <u>ි</u> වී *O*0 عر م 8 D.0. D.0. New 6,0 New 9.0 ر دو 93 &¢ √~ છ જ 816 CC 2 ري زي نن رث جن رئ \bar{z} 8.22 12958 ₩.23. 8.21 8 Old рlO 9.50 8.02 8.28 5,20 B.17 878 8.06 8.08 μd Hd හ නි 8.13 8,60 8.05 New 8.05 New 80 8,45 37,55 % 0.0 0.0 0.0 8.39 5.54 Project #: Day Day 0 9 9 Client: 250 mg/L Lab Control

Short-Term Chronic 3-Brood Ceriodaphnia dubia Survival & Reproduction Test Dat

์ -	Lab Water (80:20)												2.nC = x				· · · · · · · · · · · · · · · · · · ·							2 8
reproduction Test Date:			1	0		0 . 0	و	9	0	7			27	3	Ţ	0	0	0	4	0)	70		9
Tes	t		I	0	0	0	7	0	a	7 2			25			0	0	0	0	-	1	8		16
3			H	0) 0	ゴ	2	0	2			red.	3	Н	0	0	0	h	, ,	C	8	7	8 '
7 A T A T	Control Water / Diluent:	uction	Ö	0	0	0	ବ	7	a	0			91	ıction	O	0	0	0	7	2) «			7
loride	ater / L	Reprodu	, L	0	C	0	3	=	0	5		_	20	Reprodu	II,	0	0	0	-	2	0	8		 8 1
Sodium Chloride	trol W	Survival / Reproduction	E	0	0	0	5	=	0	=			27	Survival / Reproduction	ш	0	0	0	S	0	\sim	ム		 25
Sodi	Con	Su	Ω	0	0	0	0	8	۵ (_	ĺ	,	24	Sur	Ω	0	0	0	0	7	0	8		22
	ı		υ —	0	0	0	2	0	01	10			25		O	0	0	0	0	0	~	=		19
Material:	7		B	0	0	0	ゴ	0	9	12			26		<u>м</u>	0	0	0	0	0	=	12		22
, <u>2</u>	27.128		A	0	0	0	S	0	<u>~</u>				= 24		Ą	0	0	0	0	J.	7	01		7
												Ra E	Total =											Total =
ant	Test ID #:	Comd.	(µS/cm)	1172	1382	1192	1509	341	1192	1178				Cond.	(μS/cm)	2059	2132	2154	2113	2/25	2138	2135		
Toxic	Te	D.O.	Old		2.5	10.5	44	∞ •	8.3	<u>8</u> 0		-		D.O.	PIO		2.6	h-01	49	85 85	\$ 5.7	9,1		
Reference Toxicant		D	New	9.6	910	2.6	15 de 1	118	0.6	9				D.	New	9.0	9.9	9.4	8.6	17.4	d.t	, 2		
Re	12958	+	PIO		8.21	8.20	(3)	8.23	8.44	8,24 59.0				I	PIO		8.15	9.70		8.21	8.39	732		
		Hd	New	8.07	8.13		18.28 18.28	236 8.24	8.37	8.07		· .		Hd	New	8.05	C1:3	8.12 8.20	5.23	9,25	8.38	80.0d	<u> </u>	
	Project #:	Dav	3	0		2	3	4	5	9	7	8		Dav	- (m)	0	1	2	ω,	4	5	9	7	
Client:	Proj					·	Γ .	/gm	005				ga et es (°C)			!	l		T	/g/m	000		!	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19

~~	
.5	١
~	
9	
E	
fic	
acü	
P	

Faci	TIC EC	Facyte Ecokisk																Environmental Consulting of the
			Sho	rt-T(Short-Term Chronic 3-Brood Ceriodaphnia dubia	hron	ic 3-]	Broo	d Cei	rioda	phni	a dul	1	urvi	val &	Rep	rodu	Survival & Reproduction Test Data
Client:	ıt:		Ř	eferer	Reference Toxicant	icant			Material:	al:	So	dium (<u>رو</u> ،		. ⊢	Test Date:	te: (2/://2
Prc	Project #:		12958	<u>~</u>		Test ID #:	#:	20153	De		Ŭ	ontrol '	Control Water / Diluent:	/ Dilue	nt:	.		Lab Wate
	Day		핍		D.O.	Cond.	1.					Survival	Survival / Reproduction	oduction				
		New	PIO	New	PIO . v		п)	A	В		C	Q	E	F G	H	I	-	
· 	0	1.99		4.0		3040	0	0	0		0	0	0 0	0	0	0	-	
	-	8.09	2.00	6.9	7.7	01/6	6	0	0	0	0	0	0	0	0	0	0	
	7	8.60	8.19	9.6		3110	2	0	0	0	0	0		0	0	-	-	
Ί/:	m	8.21	8.19	8,6	4	0202		Q		0 0	0	5	3	20		0	0	
3m (4	8.14	8.19	15.0	000	3060		0	0	2	0	0		0	8		V	
)0 <i>S</i> I	5	8.21	4.37	4.4	0.8	3080	6	0	0	()	0		0	2	0	7	\propto	
	9	198	2007	100	8,0	320		7	9	0	3	·	2	7	2		0	
	7																	
	8		100 C			·									<u> </u>			
							Total=	01 =	2	\	1	2	7	8	8	9	9 0	×=
	Day		Hd		D.O.	Cond.]				,	urvival	Survival / Reproduction	duction				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		New	PIO	New	, Old		_ _	A	В	C		E	H	5	H	1	ſ	
	0	7.98		4.1		39,36	9	0	0	0	0	0	0	0	0	0	0	
	-	8:05	8,09	7.7	7.7	4020	Q	9	0	% 	0	0	0	0	0	0	0	
	7	72	8.16	0	7.01	4000	C	0	0	1.	% X	0	2	1 × (0	×	0 × 0	
٦/٢		8,18	2.8 9.8	∞ 	4	4010		<u>%</u>	0)	. (0		1.	0	'		
gm (İ	3) 11°	#. 20.	12.4	2.8	.395t		1	0	1	1	0	/	1	0	1	1	
7000		8.18	8.23	9.6	- 00	3980		1	0	}.		0)		0	1	1	
		266	3	2 0	8,0	양		١	0	1		<i>Q</i>		•	0	ز	}	
	7.							1	-)	1		J	1		1	,	
	8							1		1	1		1	1		1	J	
							Total=	\mathcal{L}	0	À	0/1/0	0 0	1/2	1/6	0	*	X/	Q = X
														1		3	1	47

Report Date: Test Link: 21 Mar-08 2:31 PM 12-5784-5226/27893

Cladoceran	Survival and R	eproduct	ion Test		-	,		•	Pacific EcoRisk
Test No: Start Date: Ending Date: Setup Date:		5:30 PM 9:00 AM	Test Type Protocol: Dil Water: Brine:	EPA/8	duction-Surviva 321/R-02-013 (20 atory Water oplicable		Duration Species: Source:		
	e: 11 Mar-08 05 e: 11 Mar-08 05				m chloride ence Toxicant	,	Client: Project:	Reference Toxicant	
Comparison	Summary								
Analysis 08-9972-6766 10-9767-289	•		1500 500	<u>-</u>	2000 1000	ChV 1732.05 707.107	PMSD N/A 28.34%	Method Fisher Exact/Bonfer Steel Many-One Rai	
Point Estima	ate Summary								
Analysis	Endpoint		% Effe	ect	Conc-mg/L	95% LCL	95% UCL	Method	
14-7627-3450	'	Survived	50		1732.051	1581.436	1897.01	Trimmed Spearman	-Karber
04-7124-5636	6 Reproduction		1		529.3204	11.38095	644.1667	Linear Interpolation	
			5		646.6019	56.90476	1023.246		
			10		793.2039	113.8095	1092.5		
			15		939.8058	170.7143	1155.838		
			20		1044.949	227.619	1207.917	• .	
			25		1121.212	616:6667	1272.26		
			40 50		1350 1501.65	1091.139 _. 1273.81	1511.927 1593.272		
7d Proportion	n Survived Sun	nmarv							
Conc-mg/L	Control Type	Reps	Mean	Minimu	ım Maximun	n SE	SD	CV	
0	Lab Water	10	0.80000	0.00000		0.13333	0.42164	52.70%	
250	÷	10	1.00000	1.00000		0.00000	0.00000	0.00%	:
500		10	1.00000	1.00000		0.00000	0.00000	0.00%	
1000		10	1.00000	1.00000	1.00000	0.00000	0.00000	0.00%	
1500		10	1.00000	1.00000	1.00000	. 0:00000	0.00000	0.00%	.
2000	· · · · · · · · · · · · · · · · · · ·	10	0.00000	0.0000	0.00000	0.00000	0.00000	0.00%]
Reproduction	n Summary					,			
Conc-mg/L	Control Type	Reps	Mean	Minimu	ım Maximum	n SE	SD	cv	
0	Lab Water	10	20	0	. 27	3.37968	10.6875	53.44%	
250		10 .	19.6	15	27	1.60693	5.08156	25.93%	Î
500		10	20.8	16	25	0.98658	3.11983	15.00%	
1000	•	10	16.7	12	19	0.83066	2.62679	15.73%	
1500		10	10.1	6.	14	0.76667	2.42441	24.00%	
2000	· · · · · · · · · · · · · · · · · · ·	10	0	0	0	0	0	0.00%	İ

Page 2 of 2

CETIS Test Summary

Report Date: Test Link: 21 Mar-08 2:31 PM 12-5784-5226/27893

		• •						I GOL LIII	Α.	12-570	4-32201210
7d Proportio	on Survived Deta	ail									
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Lab Water	1.00000	0.00000	1.00000	1.00000	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
250		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
500		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1000	_	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1500	•	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
2000		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Reproductio	n Detail										
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Lab Water	25	0	26	27	0	24	21	24	26	27
250		17	20	27	15	16	26	27	17	16	15
500		-16	23	19	18 ·	20 .	21	18	23	25	25
1000		12	16	13	15	18 .	19	19	17	19	19
1500		9	6	8	8	10	13	11	14	11	11
2000		0 ·	0	0	0	.O ·	0	0	0	0	0

* 4th brood excluded

-
isk
\approx
COOR
Ē
ific
aci
۵

Environmental Consulting and Testing	d Ceriodaphnia dubia Survival & Reprodu	Material: Sodium Chloride Test Date: 3/11/08	27893 Control Water / Diluent: Lab Water (80:20)	Survival / Reproduction	A B C D E F G H I J			0			1 0 0 1 2	0022549	7		= 9 6 8 8 10 Etu (1 14 11 11 2 a. 10.1	Reproduction	A B C D E F G H I J			5 X/O >	1.		\			
	& R				Н	0	0	0	+-	^	0 (1	-	-	2		H	0	-	X		1	1			
	vival		uent:	ion	Ð	0	0	0	0		0	N	2		=		-	0	-	1		+) 0			-
	Sur	ride	ır / Dil	product	H	0	5	0	0	-	-	7	7		27	producti	(IL,	0	0		-	0	+	0/(
	ubia	n Chlo	ol Wate	val / Re	田田	0	9	0	0	C	_	\	7		┥	'al / Rep	Щ	0	Ð	<u> </u>		1	1	1		
	nia d	Sodiun	Contro	Survi	D	0	0	0	0	-	0	K			00	Surviv	Ω	0	0	T	0	0	0	18		
	daph				D.	0	0	0	0	0	0	7	0		8		U	0	Ð	 	1	1	1	7.8		
	Cerio	terial:			В	0	0	0	Э	0		0	8	-	7		В	0.	0	0	l	1	1	1		
) poo	Ma	27893		A	0	0	0	0	0	3	0	9	· ·	9		A	0	0		((1			
	3-Br														Total =					~ 7						
	Short-Term Chronic 3-Broo	ant	Test ID #:	Cond.	(µS/cm)	33300	210	2040	3040	3030	2988	3000	3330	To the Complete		Cond.	μS/cm)	396,65	d O W	२०१०	01015	ohbo	3946	3940		
	n Ch	Toxic	Tes		PIO		80.0	35	8	4.3	8.1	1.6	.c) PIO	9	8.2	8,2	8,0	8,98	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.1		
	-Terr	Reference Toxicant		D.0.	New	9+ 50	0.0			2.2	8.8	7.01	1			D.0.	New	Grand Co.	6.7	15.71	10.3		6.6	/ h'a/		
	Short	Ref	13072		PIO			8.23	8.27	0n-8	8.30		6.20			-	PIO	8	ر م م	_	v	,,	6 89 189	8.00		
702	- 2			Hd	New 3	8.6.3	0).8 60.8		8 19	8.28	8.13	8.24 8	7			핆		ST.	791	8.09	8.13 8.26	8,25.8	j	8.23 8		
1		1	ct #:	Day	-	.	T.		3	4	2		7	8		Day		•			3	4	5 85/B	0	7	8
-		Client:	Project #:						7/	giu (1 200				100.00	I E]	<u> </u>				0007			

Appendix G

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Effluent to Fathead Minnows **CETIS Test Summary**

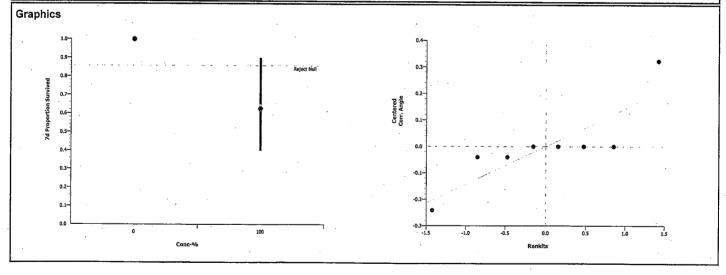
Report Date: Test Link: 03 Apr-08 10:42 AM 05-3756-6644/27823

Chronic Larv	al Fish Surviva	l and Gro	wth Test					Pacific EcoRisk
Test No: Start Date: Ending Date: Setup Date:	03-1980-4782 05 Mar-08 05: 12 Mar-08 09: 05 Mar-08 05:	30 PM 15 AM	Test Type: Protocol: Dil Water: Brine:	Growth-Su EPA/821/R Laboratory Not Applica	R-02-013 (200 Water)2)	Duration: Species: Source:	6d 15h Pimephales promelas Aquatic Biosystems, CO
1	02-8216-0966 04 Mar-08 11: : 05 Mar-08 11: 30h (19.7°C)		Code: Material: Source: Station:	13054 Effluent Precision A EFF-001	Analytical		Client: Project:	Precision Analytical NPDES
Comparison	Summary							
Analysis	Endpoint		NOEL	LO	EL	ChV ·	PMSD	Method
04-3024-1738 08-6628-7287 02-0717-3304 07-9677-6942	7d Proportion		0 <100 <0 <100	> 0 100 0 100)	N/A N/A N/A N/A	8.82% 14.26% 7.28% 8.78%	Equal Variance t Two-Sample Equal Variance t Two-Sample Equal Variance t Two-Sample Equal Variance t Two-Sample
7d Proportion	Survived Sum	mary						
1		-						
Conc-%	Control Type Lab Water	Reps 4	Mean	Minimum	Maximum		SD	CV
0		4	1.00000	1.00000	1.00000	0.00000	0.00000	0.00%
100	Receiving Wat	4	0.92500 0.62500	0.80000 0.40000	1.00000 0.90000	0.04787 0.10308	0.09574	10.35%
			0.02300	0.40000	0.90000	0.10306	0.20616	32.98%
1	mass-mg Sumr							
Conc-%	Control Type	Reps	Mean	Minimum	Maximum		SD	CV
0	Lab Water	4	0.51575	0.48500	0.54600	0.01278	0.02555	4.95%
0	Receiving Wat	4	0.47275	0.44200	0.49800	0.01450	0.02900	6.13%
100		4	0.08025	0.03100	0.12000	0.01950	0.03900	48.60%
7d Proportion	Survived Detail	il						
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			
0	Lab Water	1.00000	1.00000	1.00000	1.00000			,
0	Receiving Wat	0.90000	.0.80000	1.00000	1.00000			
100		0.60000	0.60000	0.90000	0.40000			<u> </u>
Mean Dry Bior	mass-mg Detail		···-					
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			,
0	Lab Water	0.54600	0.52300	0.50900	0.48500			
0	Receiving Wat	0.49800	0.44200	0.45400	0.49700			
100		0.12000	0.10100	0.03100	0.06900	٠		

Report Date:

Page 1 of 4

Analysis:


03 Apr-08 10:42 AM 08-6628-7287/27823

CETIS Analysis Detail

 	<u> </u>						Allalysis.		00-0020-720772762
Chronic Larval Fi	sh Survival and Gro	wth Test							Pacific EcoRisk
Endpoint	An	alysis Type	Sample Link Control Link			Date Analyzed		Version	
7d Proportion Surv	vived Co	mparison		05-3756-6	644 05-3	756-6644	03 Apr-08 10:41 AM		CETISv1.1.2
Method	Alt	H Data T	ransform	Zeta	NOEL	LOEL	Toxic Units	ChV	PMSD
Equal Variance t T	wo-Sample C	> T ′ Angula	r (Corrected)		<100	100		N/A	14.26%
Group Compariso	ons								
Control vs	Conc-%	Statistic	Critical	P-Value	MSD		Decision(0.05)		
Lab Water	100	4.13114	1.94318	0.0031	0.2283	38	Significant Effect		
ANOVA Table									
Source	Sum of Squares	Mean Squai	re DF	F Statistic	P-Valu	16 ·	Decision(0.05)		
Between	0.471491	0.471491	1.	17.07	0.0061	14	Significant Effect		
Error	0.1657617	0.027627	6				-		
Total	0.63725275	0.499118	7	-					

ANOVA Assumptions												
Attribute	Test	Statistic	Critical	P-Value	Decision(0.01)							
Variances	Modified Levene	2.57726	13.74502	0.15953	Equal Variances							
Distribution	Shapiro-Wilk W	0.78753		0.02102	Normal Distribution							

Data Summ	nary			Origi	nal Data		Transformed Data				
Conc-%	Control Type	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximum	SD	
0	Lab Water	4	1.00000	1.00000	1.00000	0.00000	1.41202	1.41202	1.41202	0.00027	
100	•	4	0.62500	0.40000	0.90000	0.20616	0.92648	0.68472	1.24905	0.23506	

Report Date:

Page 2 of 4

Analysis:

Decision(0.01)

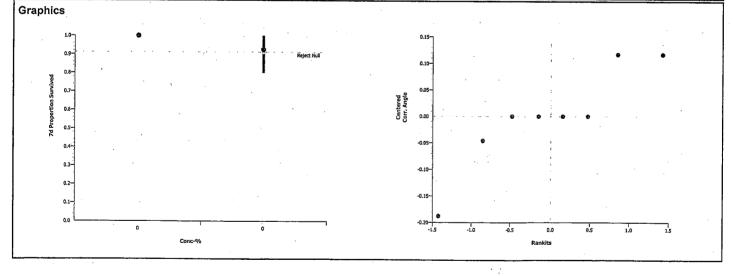
03 Apr-08 10:42 AM 04-3024-1738/27823

CETIS Analysis Detail

Attribute

Test

Endpoint		Analysis	Туре		Sample Link Control Link		Date Analyzed		Version	
7d Proportion Su	vived	Compari	son		05-3756-6644 05-3756-6644		14 03 Apr-08 10:41 AM CETI		CETISv1.1.2	
Method		Alt H	Data Tra	nsform	Zeta	NOEL	LOEL	Toxic Units	ChV	PMSD
Equal Variance t	Two-Sample	C > T	Angular (Corrected)		0	>0	N/A	N/A	8.82%
Group Comparis	ons									
Control vs	Control	· Sta	atistic	Critical	P-Value	MSD		Decision(0.05)		
Lab Water	Receiving Wat	ter 1.5	918	1.94318	0.0813	0.142	278	Non-Significant E	ffect	
ANOVA Table										
Source	Sum of Squa	res Me	an Square	DF	F Statistic	: P-Va	lue	Decision(0.05)		
Between	0.0273590	0.0	273590	1	2.53	0.162	254	Non-Significant E	ffect	
Error	0.0647854	0.0	107976	6				-		
Total	0.09214444	0.0	381566	7						


Variances	Modified	Levene		10.87036	13.74502	0.01647	Equ				
Distribution	Shapiro	-Wilk W		0.85978		0.11948	Normal Distribution				
Data Summ	nary			Origi	nal Data			Transfo	rmed Data		
Conc-%	Control Type	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximum	SD	

Critical

P-Value

Statistic

Data Summary			Origi	nal Data		Transformed Data					
Control Type	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximum	SD		
Lab Water	4	1.00000	1.00000	1.00000	0.00000	1.41202	1.41202	1.41202	0.00027		
Receiving Wat	4	0.92500	0.80000	1.00000	0.09574	1.29506	1.10715	1.41202	0.14695		
	Control Type Lab Water	Control Type Count	Control Type Count Mean Lab Water 4 1.00000	Control Type Count Mean Minimum Lab Water 4 1.00000 1.00000	Control Type Count Mean Minimum Maximum Lab Water 4 1.00000 1.00000 1.00000	Control Type Count Mean Minimum Maximum SD Lab Water 4 1.00000 1.00000 1.00000 0.00000	Control Type Count Mean Minimum Maximum SD Mean Lab Water 4 1.00000 1.00000 1.00000 0.00000 1.41202	Control Type Count Mean Minimum Maximum SD Mean Minimum Lab Water 4 1.00000 1.00000 0.00000 1.41202 1.41202	Control Type Count Mean Minimum Maximum SD Mean Minimum Maximum Lab Water 4 1.00000 1.00000 0.00000 1.41202 1.41202 1.41202		

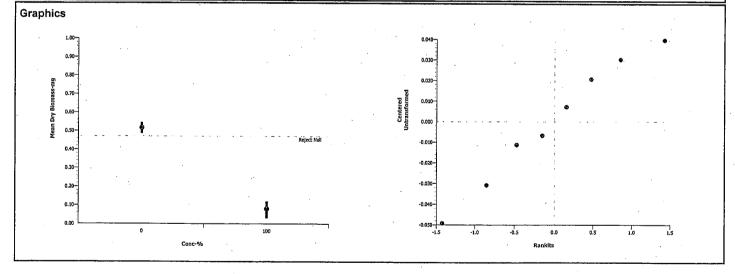
Page 3 of 4

03 Apr-08 10:42 AM 07-9677-6942/27823

CETIS Analysis Detail

Test

Attribute


Report Date: Analysis:

Chronic Larval Fis	sh Survival and Gre	owth Test						Pacific EcoRisk
Endpoint	Ar	nalysis Type		Sample Lir	nk Control Lini	Date Analyzed		Version
Mean Dry Biomass	-mg Co	omparison		05-3756-66	44 05-3756-664	4 03 Apr-08 10:41	AM	CETISv1.1.2
Method	Ai	t H Data Tra	ansform	Zeta	NOEL LOEL	Toxic Units	ChV	PMSD
Equal Variance t Tv	wo-Sample C	> T Untrans	formed		<100 100		N/A	8.78%
Group Compariso	ns							
Control vs	Conc-%	Statistic	Critical	P-Value	MSD	Decision(0.05)		
Lab Water	100	18.6811	1.94318	0.0000	0.04530	Significant Effect		
ANOVA Table								
Source	Sum of Squares	Mean Square	DF	F Statistic	P-Value	Decision(0.05)		
Between	0.3793204	0.3793204	1	348.98	0.00000	Significant Effect		·
Error	0.0065216	0.0010869	6			-		
Total	0.38584201	0.3804074	7	_				

Attribute	Test	Statistic	Critical	P-Value	Decision(0.01)	
Variances	Variance Ratio F	2.32929	47.46723	0.50548	Equal Variances	
Distribution Shapiro-Wilk W		0.97009 0.89874		0.89874	Normal Distribution	
Data Summary		Original Data			Transformed Data	

Statistic

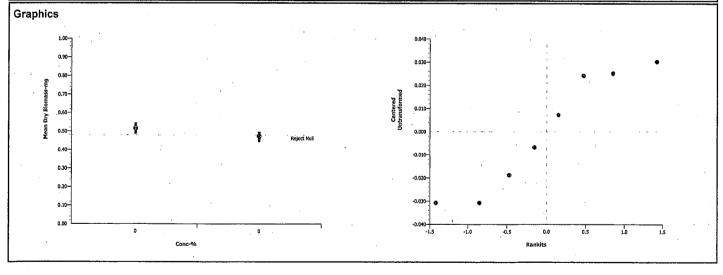
Data Summary			Original Data				Transformed Data				
Conc-%	Control Type	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximum	SD	
0	Lab Water	4	0.51575	0.48500	0.54600	0.02555					
100		4	0.08025	0.03100	0.12000	0.03900					

Report Date: Analysis:

Page 4 of 4 03 Apr-08 10:42 AM

02-0717-3304/27823

CETIS Analysis Detail


					•	Allalysis.		02-0111-000412	17023
Chronic Larval Fish Survival ar	nd Growth	Test						Pacific EcoF	₹isk
Endpoint	Analysi	s Type	Sample L	ink C	ontrol Link	Date Analyzed	<u> </u>	Version	
Mean Dry Biomass-mg	Compar	ison	05-3756-6	3644 05	5-3756-6644	03 Apr-08 10:4	2 AM	CETISv1.1.2	
Method	Alt H	Data Transform	Zeta	NOEL	LOEL	Toxic Units	ChV	PMSD	
Equal Variance t Two-Sample	C > T	Untransformed		<0	0		N/A	7.28%	
Group Comparisons									

Group Com	pariso	ns						
Control	vs	Control	Statistic	Critical	P-Value	MSD	Decision(0.05)	
Lab Water		Receiving Water	2.22504	1.94318	0.0339	0.03755	Significant Effect	

ANOVA Table						
Source	Sum of Squares	Mean Square	DF	F Statistic	P-Value	Decision(0.05)
Between	0.003698	0.003698	1	4.95	0.06773 .	Non-Significant Effect
Error	0.0044817	0.0007469	6.			
Total	0.00817963	0.0044449	7			

ANOVA ASSUM	ptions	`				
Attribute	Test	Statistic	Critical	P-Value	Decision(0.01)	
Variances	Variance Ratio F	1.28791	47.46723	0.84020	Equal Variances	
Distribution	Shapiro-Wilk W	0.88402		0.20566	Normal Distribution	

Data Summary			Original Data				Transformed Data				
Conc-%	Control Type	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximum	SD	
0	Lab Water	4	0.51575	0.48500	0.54600	0.02555					
0.	Receiving Wat	4	0.47275	0.44200	0.49800	0.02900			•		

7 Day Chronic Fathead Minnow Toxicity Test Data

Client:	Pre	cision Analytic	al	Organism Log#: 37	Age:	<48W3
Test Material: _		EFF +R	ω	Organism Supplier:	ARS	
Test ID#:	27823	Project #:	13054	Control/Diluent:	EPAMH	
Test Date:	5-5-48	Randomi	ization:	Control Water Batch:	580)	

T.	Temp	Ī	рН	DO	. (mg/L)	Conductivity	T	# T *			T
Treatment	(°C)	new	old	new	old	(μs/cm)	A	# Live	Organisr C	ns D	SIGN-OFF
Lab Water Control	25.4	8.58	8.24	8 2	0.0	131/294	10	10	10	10	Date: 3-5-08
Receiving Water	25.4	3.3	7602	1 A A	9.5	1296215	10	10	10	10	Sample ID:
100%	25.4	8-65	88	N. 8.60	14	884852	10	10	10	10	Test Solution Prep:
											Nove Ash
											Initiation Time:
Meter ID	JA	台林路	,	D 0017		Ecol Eco4					Initiation Signoff:
Lab Water Control	25.5	8 27	8.78	9.7	7-0	673 673	10	10	10	10	Date: 3-6-08
Receiving Water	25.5	88.08	8.39	4.8	7.8	281 281	10	10	10	10	Sample ID:
100%	25.5	*Byt	8 39	19840 19840	8.2	#70387a	. 10	10	10	10	Test Solution Prep:
			0 1								NEW WO:
The state of the s											Renewal Time:
, P											Renewal Signoff:
Meter ID	7A	PhIl	PH03	DO 10	P014	6083 ELO3					Old,WO:
Lab Water Control	251	8.23	7.92	9.5	7.5	294	10	10	10	10	Date: 3/7/08
Receiving Water	25.1	8-14	8.19	9.8	7.8	266	10	Ø,	10	970	SampledD157
100%	25,1	8.08	8.55	9.9	7.6	853	GJ	Ø.	G	9	Test Solution Prep:
											New WQ:
											Renewal Time:
											Renewal Signoff
Meter ID	79	PH12	PH12	<i>D01</i> 0	DOID	Ec04					Old WQ:
Lab Water Control		8.09	8.26	8.8	7.8	295	10	10	ID	10	Date: 3/8/08
Receiving Water		8.05	8.29	9.8.4	7.63	261	10	10	lo	10	Sample ID:
100%	25.1	8.08	8.81	9.8	7.6	839	LU	10	10	9	Test Solution Prep:
											New WQ:
										i	Renewal Time:
										en, ibir ist inti	Renewal Signoff:
Meter ID	78	РИП	PHII	0010	Dow	Bcol :				(Old WQ:

7 Day Chronic Fathead Minnow Toxicity Test Data

Client:	Pr	ecision Analytic	eal	Organism Log#:378	8 Age: LUBKS
Test Material: _	<u>£</u> `	FF +OCW		Organism Supplier:	ARS
Test ID#:	27823	_ Project #:	13054	Control/Diluent:	EPAMH
Test Date:	3-5-08	Random	ization:	Control Water Batch:	(०४३

Treatment	Temp	T .	pH	D.O.	(mg/L)	Conductivity	T	# Live	Organisn	ne .	<u> </u>
Treatment	(°C)	new	old	new	old	(µs/cm)	A	В	C	D	SIGN-OFF
Lab Water Control	25.4	2.58	7.90	8 9.4	6.8	143H 30	10	10	10	10	Date: 3-9-08
Receiving Wate	125,4	8 5 6	8.07	0.3		296268	7	10	10	(0	Sample ID:
100%	25.4	8:65	8.05	8.60.8		854	10	8	0)	9	Test Solution Prep:
				1000							New WO
	i did	89 ti									Renewal Time:
											Renewal Signoff:
Meter ID	1A	PHOS	PHU	0012	Doro	ECOA					Old WQ:
Lab Water Control	25.5	8,00	8.58	5.8	7.1	294	10	10	10	10	Date: 3/10/08
Receiving Water	25.5	8.09	8.31	9.0	7.2	262	9	8	10	10	Sampla IP:58
100%	255	8.33	8.59	89	7.3	825	9	7	lu	6	Test Solution Prep:
40											New WO: W FOT DC
						75.57%E					Renewal Time:
											Renewal Signoff:
Meter ID	7K	PH12	PHU3	DOM	2014	Ecot Eol					Old WO:
Lab Water Control	25.3	NX	8.58	NA	8.2	311	10	10	OJ	10	Date: 3/11/68
Receiving Water	25.3	אא	8.37	h pc	g. 3	296	q	ઇ	10	ō	Sample ID:
100%	25.3	hk.	SOLES -	4K	8.6	884	9	4	9	5	Test Solution Prep:
		a de									New WQ:
						100 100 100 100 100 100 100 100 100 100					Renewal Time: 10ンの
						e e e e e e e e e e e e e e e e e e e					Renewal Signoff:
Meter ID	7p	NA	pHh	hк	2010	Ec0					Old WQ: AS
Lab Water Control	25,0		8.10		7.3	318	10	10	10	10	Termination Date: 3/12/08
Receiving Water	25.0		7.90		7.0	293	9	8	10	/0	Termination Time:
100%	25.0		8.31		7.0	428	76	6	9	4	Termination Signoff:
											Old WQ: BB
Meter ID	7A		PHII		P1 09	604					The state of

Fathead Minnow Dry Weight Data Sheet

Client:	Precision Analytical	Test ID #:	27823	Project #:	13054	
Sample:	eft+nw	Tare Weight Date:	3-11-08	Sign-off:	MC	
Test Date:	3/5108	Final Weight Date:	3-13-08	Sign-off:	Me	

			<u>,</u>	,	
Pan	Concentration Replica	Initial Pan Weight (mg)	Final Pan Weight (mg)	Initial # of Organisms	Biomass Value (mg)
1	Control A	134.53	139.99	10	0.546
2	В	154.49	159.72	10	0.523
3	С	143.36	148.45	10	0-509
4	D	146.33	151.18	10	0.485
5.	RW A	118.09	123.07	10	0,498
6	В	147.05	151-47	10	0.472
7	C ·	136.38	140.92	10	astin at
8	D	120.72	125.69	10	0.497
9	100% A	141.50	142-70	10	0.120
10	В	146.63	1417.64	10	0.101
11	С	143.27	143.58	10	0,031
12	D	140.76	141.45	10	0.069
QA 1		118.02	118.02	_	0.00
QA2		144.25	144.22		-0.03
Balance ID		i	1		

Appendix H

Test Data and Summary of Statistics for the Reference Toxicant Evaluation of the Fathead Minnows

Report Date: Test Link: 19 Mar-08 1:15 PM 12-1966-3738/27816

Chronic Larv	al Fish Surviva	al and Gro	wth Test						Pacific EcoRisk
Test No: Start Date: Ending Date: Setup Date:	05-6085-4856 05 Mar-08 06 12 Mar-08 10 05 Mar-08 06	:00 PM :45 AM	Test Type: Protocol: Dil Water: Brine:	Growth-Su EPA/821/R Not Applica Not Applica	R-02-013 (20 able	02)	Duration: Species: Source:	6d 16h Pimephales promelas Aquatic Biosystems, 0	
Sample No: Sample Date: Receive Date: Sample Age:	08-2813-9422 05 Mar-08 06 05 Mar-08 06 N/A (25.8 °C)	:00 PM :00 PM	Code: Material: Source: Station:	13059 Copper sul Reference In House			Client: Project:		
Comparison S	Summary								
Analysis [,]	Endpoint		NOEL	LO	EL	ChV	PMSD	Method	
16-6694-8479	7d Proportion	Survived	12.5	25		17.6777	7.35%	Steel Many-One Ran	k
17-2495-7769	Mean Dry Bio	mass-mg	12.5	25	•	17.6777	9.70%	Dunnett's Multiple Co	mparison
Point Estimat	e Summary								
Analysis	Endpoint		% Effe	ct Cor	nc-µg/L	95% LCL	95% UCL	Method	•
	7d Proportion	Survived	1		19875	N/A	N/A	Linear Regression	
			5 .	10.8	32174	N/A	N/A		
			10	12.0	06853	N/A	N/A	•	
			15	12.9	98991 .	N/A	N/A		
]			20	13.7	77211	N/A	N/A		
,			25	14.4	4806	N/A	N/A		
			40	16.4	43175	N/A	N/A	•	
			50	17.7	72998	N/A	N/A		
06-6746-8544	Mean Dry Bio	mass-mg	1	6.95	55677	N/A	9.90607	Linear Interpolation	
			5	9.77	78382	7.009964	14.66757		
			10	12.6	6273	9.327955	13.98016		
	•		15	13.3	37441	12.11425	14.6075	•	
	•		20	14.0	0861	12.9419	15.24804		
			25	14.7	79779	13.7378	15.92113		
			40	. 16.9		16.05587	17.8896		
			50 -	18.3	35622	17.51128	19.11429		
7d Proportion	Survived Sun	nmary							
	Control Type	Reps	Mean	Minimum	Maximum		SD	CV	
,	Lab Water	4	1.00000	1.00000	1.00000	0.00000	0.00000	0.00%	
6.25		4	0.97500	0.90000	1.00000	0.02500	0.05000	5.13%	•
12.5		4	0.97500	0.90000	1.00000	0.02500	0,05000	5.13%	
25		4	0.07778	0.00000	0.11111	0.02606	0.05212	67.01%	;
50		4	0.00000	0.00000	0.00000	0.00000	0.00000	0.00%	
100		4 .	0.00000	0.00000	0.00000	0.00000	0.00000	0.00%	
Mean Dry Bior	- ·	· ·							,
	Control Type	Reps	Mean	Minimum	Maximum		SD	CV	
	Lab Water	4	0.54075	0.53300	0.55700	0.00557	0.01115	2.06%	
6.25 12.5		4	0.56575	0.50500	0.61900	0.02496	0.04993	8.83%	
25		4	0.50425	0.47400	0.55000	0.01766	0.03531	7.00%	`
50		4	0.01839	0.00000	0.04100	0.00927	0.01853	100.79%	
100	•	4	0.00000		0.00000	0.00000	0.00000	0.00%	
100		4	0.00000	0.00000	0.00000	0.00000	0,00000	0.00%	

Report Date: Test Link: 19 Mar-08 1:15 PM 12-1966-3738/27816

CETIS Test Summary

											 _
7d Proportio	on Survived Deta	ail							 		 ٦
Conc-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Lab Water	1.00000	1.00000	1.00000	1.00000		-	 	 	-	 1
6.25 ·		1.00000	1.00000	1.00000	0.90000						1
12.5		, 1.00000	1.00000	1.00000	0.90000		-				1
25		0.11111	0.10000	0.00000	0.10000			•			
50		0.00000	0.00000	0.00000	0.00000						ł
100		0.00000	0.00000	0.00000	0.00000						١
Mean Dry Bi	omass-mg Detai	i							,		1
Conc-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4				•		
0 -	Lab Water	0.53400	0.55700	0.53300	0.53900			 	 •		 1
6.25		0.61900	0.50500	0.54800	0.59100			•			1
12.5		0.47400	0.51400	0.55000	0.47900						
25		0.02556	0.00700	0.00000	0.04100						١
50		0.00000	0.00000	0.00000	0.00000						1
100		0.00000	0.00000	0.00000	0.00000						1

7 Day Chronic Fathead Minnow Reference Toxicant Test Data

Client:	Re	ference Toxic	ant	Organism Log#: 378	? Age:	< 48he
Test Material: _	Co	pper Sulfate (µg	/L)	Organism Supplier:	A-BS	
Test ID#: _	27816	Project #:	13059	Control/Diluent:	EPAMH	
Test Date: _	3/5/08	Random	ization:	Control Water Batch:	1083	

Treatment	Temp	1	pН	D.O	. (mg/L)	Conductivity	Ī	# Live (Organisn	15	
Treatment	(°C)	New	Old	New	Old	(μs/cm)	A	В	С	D	SIGN-OFF
Control	25.8	8.33)	9.4		304	10	10	10	10	Date: 3/5/08
6.25	25.8	8.29		9.4		306	10	10	10	10	Test Solution Prep:
12.5	258	8.24	ile)	9.4		305	10	10	10	10	New WQ:
25	25.8	8.28		9.3		305	109	10	10	10	Initiation Time:
50	25.8	8.20		9.3		305	10	10	10	10	Initiation Signoff:
100	25.8	8.18		9.3		308	10	10	10	10	
Meter ID	7A	2H03		DUIO		EC03					
Control	26.3	7.96	8.07	9.4	7.9	305	10	10	10	10	Date: 3.6.08
6.25	25.3	7.84	n9.5	9.3	7.9	303	10	10	10	10	Test Solution Prep:
12.5	25.3	7.99	7.91	9.4	8.0	302	10	10	10	9	New WQ:
25	25.3	8.00	7.89	9.3	7.9	302	\$2	3	-1	7	Renewal Time:
50	25.3	8.00	7.87	9.3	7.8	30a)	2	3	6	Renewal Signoff:
100	25.3	7.97	7.85	9.4	7.9	303	Q	0	0	C	Old WO:
Meter ID	7A	PHII	PHI	0010	0610	E033					
Control	25.2	7.74	8.45	9.8	8.2	295	ĵo	įυ	10	10	Date: 7-08 Test Solution Prep:
6.25	25.2	7.85	8.35	9.5	7.8	292	10	10	10	1094	
12.5	25.7	7.92	9.28	9.4	7.6	294	10	10	10	9	New WQ:
25	25.2	7.97	8.21	9.3	7.4	293	. 1	2	Ü.	52	Renewal Time: (どのも
50	25.2	8.00	8.14	9.2	7.4	292	Ö	Ø	0	0	Renewal Signoff:
100		1		()			-	-		Old WQ:
Meter ID	74	P412	PH12	Dela	700	Ec04					
Control	25.1	8.21	7.99	8.9	8.0	299	to	10	10	10	Date: 3 8 6 8
6.25	25.1	8-23	7.98	8.01	8.1	296	10	10	10	10	Test Solution Prep:
12.5	75.1	8.00	7.97	9.1	8.0	292	10	10	10	9	New WQ:
25	25.1	8.22	7.97	8.4	8.2	293	1	2	0	5	Renewal Time:
50				_	-	_			_	_	Renewal Signoff: JT
100	7	1			44			~	-		Old WQ:
Meter ID	7A	oHo3.	PHIL	Dav2	Doto	EC04					

7 Day Chronic Fathead Minnow Reference Toxicant Test Data

Client:	Reference Toxicant	Organism Log#: 3	188 Age:	C 48h
Test Material:	Copper Sulfate (µg/L)	Organism Supplier:	NB S	
Test ID#: _	27816 Project #:13059	Control/Diluent:	EPAMH	
Test Date:	3/5/08 Randomization:	Control Water Batch:	1083	

T 4	Temp		pН	D.O.	. (mg/L)	Conductivity		# Live (Organism	· · · · · ·	
Treatment	(°C)	new	old	new	old	(μs/cm)	А	B	C	, D	SIGN-OFF
Control	25.4	8.27	7.77	8.6	7.5	292	10	10	. 10	10	Date: 3-9-08
6.25	254	હ'ઇઇ	7.71	8.7	7.2	293	10	10	10	9	Test Solution Prep
12.5	25.4	8.19	7.72	8.7	7.9	295	10	10.	10	9	New WQ:
25	25.4	8.17	7,73	8.6	7.7	. 292	1	1		3	Renewal Time:
50	_				-		-	-	_	^	Renewal Signoff:
100	-	-	-	-	_	-	-	_	-	_	Old WQ:
Meter ID	74	PHII	PHIZ	D010	Do 10	Ecol					
Control	25.4	40.8	7.86	8.8	7.3	294	10	10	(0	10	Date: 3-10-04
6.25	154	8.07	7.82	જે. જ	7.3	295	(0	(0)	્ડ	9	Test Solution Prep:
12.5	25.4	8.08	7.85	8.9	7.5	296	(0	10	ľΟ	9	New WQ:
25	25.4	8.08	7.87	8.6	7.7	296		l	_	2	Renewal Time:
50	_		,	~	-	-	_	~	_		Renewal Signoff:
100	_	}			_	_	_	-			Old WQ:
Meter ID	113	PHIZ	PH12	DOKO	0010	Ec04					
Control	25.2	8.45	8.12	9.1	8.2	310	10	10	10	0)	Date: 3/11/08
6.25	25.2	8.32	8.06	9.1	8.2	296	‡ 0	10	[0]	9	Test Solution Prep:
12.5	25.1	8.16	7.91	9.1	8.1	296	(o	10	[0	9	New WO:
25	25.2	8.09	7.95	9.1	7.9	295	1	1		1	Renewal Time:
50	1	,	_	_	•	-		-		- 1	Renewal Signoff:
100	4	-	-	~			7	_	-	_	Old WQ:
Meter ID	18	PHIL	ph/2	D012	0010	ecos					
Control	25.0		8.44		7-4	306	/0	10	10	10	Date: 3/17/08
6.25	25.0		8-27		6-8	308	10	10	10	9	Termination Time: /036
12.5	25.0		8-18		6.0	304	10	10	10	9	Termination Signoff:
25	25.0		8-11		<i>6</i> .4	316	1	<u> </u>	-	1	Old WQ: YM
50	~	100	-		-		-	-		_	
100	- 330000		-				_	-	-	_	
Meter ID	7A		Phy		0014	804					

Fathead Minnow Dry Weight Data Sheet

Client: _	Reference Toxicant	Test ID #: _	27816	Project # 13	3059
Sample: _	Copper Sulfate (µg/L)	_ Tare Weight Date: _	3-6-08	Sign-off: The	
Test Date: _	3/5/08	_ Final Weight Date: _	3-13-08	Sign-off: WC	

Pan ID	Concentration Replicate	Initial Pan Weight (mg)	Final Pan Weight (mg)	Initial # of Organisms	Biomass Value (mg)
1	Control A	116.56	121.90	10	8-534
2	В	115.87	121.44	10	0.557
3	С	93.05	98.38	10	0.533
4	. · D	108.17	113.56	10	0.539
5	6.25 A	116.65	122.84	10	0.419
. 6	В	127.68	132.73	10	0.505
7	C	120.35	125.83	10	0.548
8	D	129-81	135.72	10	0.511
9 .	12.5 A	118.41	123.15	· 10	0.474
10	В	W+33.104.38	109.52	10	0,514
. 11	C	86.94	92.44	10	0 - 55-0
12	D	109-06	113.85	10 .	0.429
13	25 A	103.47	10370	10 mp 9	0.026
14	В	110.36	110.43	10	0.007
15	C	120.98	-	10	_
16	D	115-87	116.28	10	0.041
17	50 A	112,72		10	_
18	В	107.31		10	
19	C	115.74		10	
20	D	115.06		10	Spanners.
21	100 A	115.43	_	10	_
22	В	119.32		10,	<u></u>
23	С	118.53			-
24	D	109.55		10	
QA1	The second of the second	99.58	99.56		-0.02
QA2		184-38 123.LIS	123.42	Hustre State	-0.03
QA3		167,15		1 17 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100
Balance ID:			1	1965 (1964) 1965 (1964)	